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A B S T R A C T

Even though several algorithms have been proposed in the literature for oscillation detection and diagnosis,
they can work reliably only for a specific type of oscillation and there is a lack of a common framework
that accommodates the detection and diagnosis for various types of oscillations. To tackle this problem, an
FACMD-based (fast adaptive chirp mode decomposition) detection and diagnosis framework is established in
this study. It consists of two common oscillation detection indices and a novel strategy for diagnosing nonlinear
and linear oscillations. Apart from detecting and diagnosing various single/multiple oscillations in single-input
single-output (SISO) loop, FACMD can also distinguish the combination of linear or nonlinear oscillations and
contribute to the root cause analysis for plant-wide oscillations. Finally, a series of simulations and industrial
cases are used for testing. Compared with the existing work, the proposed methodology has better detection
and diagnosis accuracy and a higher level of automation, especially in processing complex multiple oscillations.

1. Introduction

Oscillations have a detrimental effect on the control loop perfor-
mance. They can cause plants to be run in sub-optimal conditions and
may result in the waste of raw materials, increased energy consump-
tion, and even compromised stability and safety. Therefore, oscillation
detection and diagnosis is of crucial importance in maintaining the
performance of control loops. Over the past decades, methods of
oscillation detection and diagnosis have been developed rapidly. Fig. 1
briefly summarizes the development of the methods and this proposed
method on oscillation detection and diagnosis. A brief overview is
provided as follows.

1.1. Methods for oscillation detection and diagnosis

Iwashita (1992) firstly proposed a method for oscillation detection
of a servo system. The first detection algorithm in control loops was
proposed by Hägglund (1995). It was developed based on computing
the regularity of large enough integral absolute errors (IAEs) between
successive zero-crossings of the control errors. Later, Forsman and
Stattin (1999) presented a modified method based on the regularity
of upper and lower IAEs. In addition to those IAE-based methods,
various auto-covariance function (ACF)-based methods were widely
exploited to detect oscillations (Miao & Seborg, 1999) as the ACF of
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an oscillatory signal can filter out noise while reflecting the oscillatory
property presented in the signal. However, all the above methods are
only applicable to time series with single oscillations.

With respect to detecting multiple oscillations, this difficulty was
initially overcome by means of bandpass filtering, in which the filter
boundaries were selected from the inspection in the power spectral
density (PSD) (Thornhill, Huang and Zhang, 2003). This technique
can isolate components of different frequencies via band-pass filters,
but its performance is affected by the selected frequency band. To
tackle this issue, Naghoosi and Huang (2014a) proposed to identify
the multiple oscillations directly by clustering the ACF peaks with
similar amplitude and evaluate the regularity for each other. However,
this method relies on restrictive assumptions that the oscillation signal
should be stationary and its magnitude/frequency is not time-varying.

Once oscillations are detected, the next task is to diagnose the cor-
responding causes, which can be classified into three types, including
external harmonic disturbances, poor control tuning, or nonlinearity.
Generally, oscillations can be classified into linear oscillations and oscil-
lations induced by nonlinearities. Nonlinear oscillations have a distinct
property, which makes them distinguishable from the other types of
oscillations (Naghoosi & Huang, 2014b). In addition to the main fre-
quency oscillation, nonlinear oscillations have several harmonics with
phase coupling. Therefore, the methods like surrogate data (Thornhill,
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Fig. 1. A brief list of oscillation detection and diagnosis methods. FACMD is the proposed method in this paper; it is shown in the red dash box.

Cox and Paulonis, 2003), bihocerence (Lang et al., 2018), etc. are suit-
able for the detection and diagnosis of nonlinear oscillations. The other
two types of linear oscillations, i.e., external harmonic disturbance, and
oscillation induced by poor controller tuning are very similar to each
other, and there is a lack of techniques to distinguish them (Naghoosi
& Huang, 2014b). Karra and Karim (2009) first proposed a solution
using a system identification approach to distinguish between external
disturbance and oscillations caused by controller tuning. Then, Babji,
Nallasivam, and Rengaswamy (2012) proposed a method based on
the assumption that oscillation caused by poor tuning has a higher
amplitude than the external harmonic disturbance. Recently, Naghoosi
and Huang (2014b) used different peaks between ACF and signal-
to-noise (SNR) to distinguish linear oscillations of process variables
(PVs), which is the most significant progress. However, this approach
can only deal with a single oscillation. Then they tried to detect and
characterize the multiple oscillations by wavelet transform (Naghoosi
& Huang, 2017). This method may be useful, but it is also limited by
the shortcomings of wavelet transform in essence, such as the choice of
mother wavelet and scale. This work (Naghoosi & Huang, 2017) is the
most advanced methodology so far, and we will compare and discuss
our method with it in detail later.

1.2. Motivations and contributions

With the development of signal decomposition, many related tech-
niques have been introduced to oscillation detection and diagnosis.
They have greatly improved the level of control performance monitor-
ing. They become hot research topics, such as EMD-based (empirical
mode decomposition) (Srinivasan, Rengaswamy, & Miller, 2007), ITD-
based (intrinsic time-scale decomposition) (Guo, Xie, Ye, & Horch,
2014), LMD-based (local mean decomposition) (Xie, Lang, Chen, Horch,
& Su, 2016), MEMD-based (Aftab, Hovd, & Sivalingam, 2017, 2018a),
FMEMD-based (fast multivariate EMD) (Lang et al., 2018), VMD-
based (variational mode decomposition) (Dewa, Wardana, & Hawi-
bowo, 2018). They suppose that the signal components satisfy strict
separation conditions in the time-frequency domain, so they cannot
fully separate those close or overlapped signal components. In addition,
all the above methods cannot handle mode-mixing, poor noise robust-
ness, and low-frequency resolutions. In this work, a powerful signal
processing tool called variational nonlinear chirp mode decomposition
(VNCMD) was introduced (Chen, Dong, Peng, Zhang, & Meng, 2017).
It was derived by solving an optimal demodulation problem, so it is
capable of accurately estimating the instantaneous frequencies (IFs)
and instantaneous amplitudes (IAs) of signals with very close or even
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crossed modes. However, both the mode number and the bandwidth
parameter should be specified in advance. Actually, they need to adjust
themselves according to different stages of the optimization. To tackle
these issues, Chen et al. (2019) proposed an adaptive chirp mode
decomposition (ACMD), which was a tractable version of VNCMD,
and showed better resolution than current time-frequency distributions.
ACMD has been successfully applied to fault diagnosis of rotor-stator
systems (Chen et al., 2019), but its application in industrial control
systems has not been reported.

Although past research focused on oscillation detection and diag-
nosis, there is still no common framework that accommodates the
detection and diagnosis of various types of oscillations (Ullah, Das,
Parmar, Rengaswamy, & Srinivasan, 2019). Thus, the main goals of this
work will cover:

(1) A detailed literature survey is conducted and a discussion of
drawbacks of various methods for oscillation detection and di-
agnosis is highlighted.

(2) A fast ACMD (FACMD) algorithm is developed by modifying the
convergence criterion of the vanilla ACMD using the correlation
relationships and the energy ratio. It is expected to perform more
efficiently than the vanilla ACMD.

(3) An integrated framework that addresses the challenges in oscilla-
tion detection and diagnosis is established based on FACMD. The
FACMD-based framework includes (i) oscillation detection, (ii) a
novel nonlinear oscillation diagnosis algorithm, and (iii) discrim-
ination of linear oscillations. The framework can automatically
detect and diagnose various linear and nonlinear oscillations
without prior knowledge.

(4) Compared with the existing works (Aftab et al., 2017; Naghoosi
& Huang, 2014b, 2017), the proposed methodology not only can
distinguish the combination of different types of oscillations but
also has better accuracy of detection and diagnosis and a higher
level of automation, especially for complex multiple oscillations.

The integrated framework is detailed in the following sections. Sec-
tion 2 provides an overview of VNCMD and ACMD, followed by the
proposed FACMD elaborately. Sections 3 and 4 describe the detailed
algorithm of oscillation detection and diagnosis, respectively. The sim-
ulation and industrial cases are studied in Section 5, followed by
conclusions.

2. From VNCMD and ACMD to FACMD

2.1. VNCMD

VNCMD (Chen et al., 2017) is developed based on the fact that a
wideband nonlinear chirp signal can be transformed into a narrowed-
band signal using demodulation techniques. This decomposition
method is a generation of VMD (Dragomiretskiy & Zosso, 2013).
It assumes that a non-stationary signal 𝑥 (𝑡) is composed of 𝐾 AM-
FM (amplitude-modulated and frequency-modulated) functions and
expressed as

𝑥 (𝑡) =
𝐾
∑

𝑚=1
𝑥𝑚 (𝑡) =

𝐾
∑

𝑚=1
𝑎𝑚 (𝑡) cos

(

2𝜋 ∫

𝑡

0
𝑓𝑚 (𝑠) 𝑑𝑠 + 𝜙𝑚

)

+ 𝑛 (𝑡) (1)

where 𝑥 (𝑡) is a superposition of 𝐾 modes 𝑥𝑚 (𝑡) for 𝑚 = 1, 2,… , 𝐾;
𝑎𝑚 (𝑡) > 0, 𝑓𝑚 (𝑡) > 0 and 𝜙𝑚 denote the instantaneous amplitude (IA),
the instantaneous frequency (IF) and the initial phase of the 𝑚th mode,
respectively. Generally, IA and IF are assumed to be smooth functions.
They vary more slowly than their phase function, i.e. |

|

𝑎′𝑚 (𝑡)|
|

, |
|

𝑓 ′
𝑚 (𝑡)|

|

≪
𝑓𝑚 (𝑡). Based on the demodulation techniques, Eq. (1) can be rewritten
as the de-chirped form as

𝑥 (𝑡) =
𝐾
∑

𝑚=1
𝛼𝑚 (𝑡) cos

(

2𝜋 ∫

𝑡

0
𝑓𝑚 (𝑠) 𝑑𝑠

)

+ 𝛽𝑚 (𝑡) sin
(

2𝜋 ∫

𝑡

0
𝑓𝑚 (𝑠) 𝑑𝑠

)

(2)

with

𝛼𝑚 (𝑡) = 𝑎𝑚 (𝑡) cos
(

2𝜋 ∫

𝑡

0

(

𝑓𝑚 (𝑠) − 𝑓𝑚 (𝑠)
)

𝑑𝑠 + 𝜙𝑚

)

, (3)

𝛽𝑚 (𝑡) = −𝑎𝑚 (𝑡) sin
(

2𝜋 ∫

𝑡

0

(

𝑓𝑚 (𝑠) − 𝑓𝑚 (𝑠)
)

𝑑𝑠 + 𝜙𝑚

)

(4)

where 𝛼𝑚 (𝑡) and 𝛽𝑚 (𝑡) are two de-chirped (demodulated) signals which
can recover IA as 𝑎𝑚 (𝑡) =

√

𝛼2𝑚 (𝑡) + 𝛽2𝑚 (𝑡); 𝑓𝑚 (𝑠) is the estimated fre-
quency function of the two demodulation operators
cos

(

2𝜋 ∫ 𝑡0 𝑓𝑚 (𝑠) 𝑑𝑠
)

and sin
(

2𝜋 ∫ 𝑡0 𝑓𝑚 (𝑠) 𝑑𝑠
)

. If 𝑓𝑚 (𝑡) = 𝑓𝑚 (𝑡) ideally,
the demodulated signals 𝛼𝑚 (𝑡) and 𝛽𝑚 (𝑡) will purely be AM (amplitude-
modulated) signals which are slowly varying baseband signals with
narrowest bandwidths. Therefore, VNCMD estimates the signal modes
by minimizing the bandwidths of the demodulated signals as

min
{𝛼𝑚(𝑡)},{𝛽𝑚(𝑡)},

{

𝑓𝑚(𝑡)
}

{ 𝐾
∑

𝑚=1

‖

‖

𝛼′′𝑚 (𝑡)‖
‖

2
2 + ‖

‖

𝛽′′𝑚 (𝑡)‖
‖

2
2

}

𝑠.𝑡. 𝑥 (𝑡) =
𝐾
∑

𝑚=1
𝑎𝑚 (𝑡) cos

(

2𝜋 ∫

𝑡

0
𝑓𝑚 (𝑠) 𝑑𝑠 + 𝜙𝑚

)

(5)

where ‖⋅‖2 stands for the 𝑙2 norm. This constrained optimization prob-
lem can be solved by the augmented Lagrange multiplier method (Chen
et al., 2017).

2.2. ACMD

Although VNCMD has remarkable performance in signal decompo-
sition, one of its major limitations is that the number of modes 𝐾 and
the corresponding IFs should be provided in advance. However, it is
difficult to know all the mentioned information in real environments.
To tackle the issue, Chen, Yang, Peng, Dong et al. (2019) proposed a
tractable version of VNCMD, termed as adaptive chirp mode decompo-
sition (ACMD). The main parts of ACMD consist of a recursive mode
extraction framework, an adaptive bandwidth updating rule, and an IF
initialization scheme based on Hilbert transform. Specifically, for the
𝑚th mode, ACMD solves the following problem

min
{𝛼𝑚(𝑡)},{𝛽𝑚(𝑡)},

{

𝑓𝑚(𝑡)
}

‖

‖

𝛼′′𝑚‖‖
2
2 + ‖

‖

𝛽′′𝑚‖‖
2
2 + 𝜏 ‖‖𝑥 (𝑡) − 𝑥𝑚 (𝑡)‖

‖

2
2 (6)

with

𝑥𝑚 (𝑡) = 𝛼𝑚 (𝑡) cos
(

2𝜋 ∫

𝑡

0
𝑓𝑚 (𝑠) 𝑑𝑠

)

+ 𝛽𝑚 (𝑡) sin
(

2𝜋 ∫

𝑡

0
𝑓𝑚 (𝑠) 𝑑𝑠

)

(7)

where the 𝑙2 norm of the second derivative (‖
‖

𝛼′′𝑚‖‖
2
2 + ‖

‖

𝛽′′𝑚‖‖
2
2) imposes

smoothness constraints on 𝛼𝑚 (𝑡) and 𝛽𝑚 (𝑡), just like Eq. (5); 𝜏 is a
weighting factor of the energy of the residual.

Assume that the time series are sampled at 𝑡 = 𝑡0, 𝑡1,… , 𝑡𝑁−1. The
discrete version of Eq. (6) can be obtained as

𝐽𝜏
(

𝐲𝑚, 𝐟𝑚
)

= ‖

‖

Φ𝐲𝑚‖‖
2
2 + 𝜏 ‖‖𝐱 −𝐊𝑚𝐲𝑚‖‖

2
2 (8)

where 𝐱 =
[

𝑥
(

𝑡0
)

,… , 𝑥
(

𝑡𝑁−1
)]𝑇 , 𝐟𝑚 =

[

𝑓𝑚
(

𝑡0
)

,… , 𝑓𝑚
(

𝑡𝑁−1
)]𝑇 ; 𝐲𝑚 =

[

𝛼𝑇𝑚 𝛽
𝑇
𝑚
]𝑇 with 𝛼𝑚 =

[

𝛼𝑚
(

𝑡0
)

,… , 𝛼𝑚
(

𝑡𝑁−1
)]𝑇 , 𝛽𝑚 =

[

𝛽𝑚
(

𝑡0
)

,… ,
𝛽𝑚

(

𝑡𝑁−1
)]𝑇 ; the kernel matrix is 𝐊𝑚 =

[

𝐂𝑚 𝐒𝑚
]

with 𝐂𝑚 = 𝑑𝑖𝑎𝑔
[

cos
(

𝜑𝑚
(

𝑡0
))

,… , cos
(

𝜑𝑚
(

𝑡𝑁−1
))]

, 𝐒𝑚 = 𝑑𝑖𝑎𝑔
[

sin
(

𝜑𝑚
(

𝑡0
))

,… ,

sin
(

𝜑𝑚
(

𝑡𝑁−1
))]

, where 𝜑𝑚 (𝑡) = 2𝜋 ∫ 𝑡0 𝑓𝑚 (𝑠) 𝑑𝑠; Φ =
[

𝐃 𝟎
𝟎 𝐃

]

, in which

𝟎 is a zero matrix and 𝐃 is a second-order difference matrix.

𝐃 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

−1 1 0 ⋯ 0
1 −2 1 ⋯ 0
⋮ ⋱ ⋱ ⋱ ⋮

0 ⋯ 1 −2 1
0 ⋯ 0 1 −1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(𝑁−2)×𝑁

.

Motivated by the matching pursuit-like method, ACMD uses a greedy
algorithm to extract the sub-signals one by one and the corresponding
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procedures are shown in Algorithm 1.1 For more details, refer to Chen,
Yang, Peng, Dong et al. (2019). Although ACMD using a recursive
mode extraction scheme is the latest development in the field of signal
decomposition with some promising advantages, it is prone to the
over-decomposition problem and it cannot distinguish white noise (the
normal working condition) from fault signals. In this paper, these
limitations are solved and the proposed scheme is detailed in the
following sections.

2.3. Fast ACMD

2.3.1. Two improvements of the vanilla ACMD
The vanilla ACMD has two evident shortcomings. Firstly, its mode

number is learned by assessing the energy of the residual signal (Step
2 in Algorithm 1), which is highly correlated with the signal noise
level. However, estimating noise levels in real signals is a challenging
task, so the adaptability of the vanilla ACMD is limited. To improve
the accuracy, the relationship between the extracted modes and the
original signal is used as the stopping criterion for the outer loop, rather
than the energy of the residual signal. In this way, the mode number
can be determined by the signal itself based on different stages of the
optimization. The correlation coefficient is an ideal index to measure
such a relationship given as

𝜌𝑚 =
𝑐𝑜𝑣

(

𝑥𝑚, 𝑥
)

𝑠𝑡𝑑 (𝑥) 𝑠𝑡𝑑
(

𝑥𝑚
) , 𝑚 = 1, 2, 3,… , 𝐾 (9)

where 𝑐𝑜𝑣 (⋅) and 𝑠𝑡𝑑 (⋅) symbolize the covariance and the standard
deviation, respectively. The normalized correlation coefficient can be

1 𝜇 and 𝜏 regulate the smooth degrees of the output modes and IFs
respectively and 𝜇 = 0.5𝑒−8 and 𝜏1 = 1𝑒−8 are recommended in this paper.

calculated by

𝜆𝑚 =
𝜌𝑚

max
{

𝜌1, 𝜌2,… , 𝜌𝐾
} , 𝑚 = 1, 2, 3,… , 𝐾 (10)

However, the above original definition of the normalized correlation
coefficient cannot be directly applied to ACMD as the mode number 𝐾
is unknown during the iteration. Therefore, updating 𝜆𝑗 is proposed,
i.e.

𝜆𝑗 =
𝜌𝑗

max
{

𝜌1, 𝜌2,… , 𝜌𝑚
} , 𝑗 = 1, 2, 3,… (11)

where 𝑚 is the number of currently extracted modes. This novel modi-
fied procedure is described in detail from Step 6 till Step 8 of Algorithm
2. During those steps, the threshold 𝜇𝜆 = 0.15 is recommended and the
selection of the threshold is discussed in Section 3.2.

Secondly, as the filter bank property of the vanilla ACMD, in
essence, resembles that of the VMD (Dragomiretskiy & Zosso, 2013),
the vanilla ACMD will decompose white noise into too many similar
AM-FM modes, which means this method cannot distinguish noise
from oscillation signals. However, in a real industrial control system,
normal process outputs are often contaminated with noise. Thus it is
necessary to improve the vanilla ACMD and make it effectively extract
normal outputs from various signals; i.e. normal and oscillating loops
are separated first. As the oscillation of the normal signal is mainly
caused by noise, the rest of modes obtained by ACMD have almost
equal energy and the energy ratio (ER) of each corresponding mode
to the total energy is very small when the normal signal is extracted.
Therefore, if

𝐸𝑅𝑚 = ‖

‖

𝐫𝑚‖‖
2
2 ∕ ‖𝐱‖

2
2 > 𝜇𝑛, 𝑚 = 1, 2, 3 (12)

the signal is regarded to be sampled from a normal case, where 𝜇𝑛 = 0.9
is recommended. The discussion on the choice of the threshold is given
in Section 3.2.

The above two improvements are summarized in Algorithm 2,
which is termed as the fast ACMD (FACMD), as they can significantly
speed up the vanilla ACMD by reducing the number of outer loops. The
corresponding advantages and efficiency of FACMD are demonstrated
as follows.

2.3.2. Comparison study
Two cases are used to demonstrate the merits of the proposed

FACMD.

Case 1: A synthetic square wave signal (Eq. (13)) is written as

𝑥 (𝑡) = 4
𝜋
sin (2𝜋 × 10𝑡) + 4

3𝜋
sin (2𝜋 × 30𝑡) + 4

5𝜋
sin (2𝜋 × 50𝑡) + 𝜂 (𝑡) (13)

where 𝜂 (𝑡) ∼  (0, 0.5) represents the Gaussian noise.
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Fig. 2. FACMD decomposition results of the square wave signal. Red dashed lines and blue solid lines represent the real sub-signals contained in 𝑥(𝑡) and the modes obtained by
decomposition, respectively . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Table 1
Running time and errors of different methods for square wave and time-varying signals.

Signal Index FACMD ACMD VMD ITD LMD EMD

(Case 1)
Square wave

Time 0.9559 1.6538 0.6557 0.1466 0.0897 0.1082
Error 110.7623 716.1157 487.5369 921.2327 639.2833 693.8335

(Case 2)
Time-varying

Time 0.4563 0.5186 0.6846 0.0111 0.0209 0.0190
Error 113.8782 146.3545 884.3469 1725.3421 1835.5768 1364.9656

The decomposition of FACMD and the vanilla ACMD are respec-
tively shown in Figs. 2 and 3. Since the cores of both the proposed
FACMD and the vanilla ACMD are derived from VNCMD, their decom-
position performances of the first three modes (𝑥1, 𝑥2, 𝑥3) are similar
and satisfactory. However, the vanilla ACMD produces three redundant
modes while FACMD nearly perfectly highlights the composition of the
original signal. In addition, the running time of the proposed FACMD
and the vanilla ACMD is 0.9559 s and 1.6538 s, respectively. Thus,
the proposed FACMD indeed speeds up computation as well as reduces
redundancy while the same decomposition quality is maintained. Some
other typical mainstream decomposition algorithms, including VMD
(Dragomiretskiy & Zosso, 2013), ITD (Frei & Osorio, 2006), LMD
(Smith, 2005) and EMD (Huang et al., 1998), are also applied; the
corresponding performance plots are shown in Figs. 4, 5, 6, and 7,
respectively. It can be clearly observed that FACMD is still superior to
all the above four classic methods.

Case 2: A time-varying signal in Eq. (14) borrowed from Chen, Yang,
Peng, Dong et al. (2019) is tested here.

𝑥 (𝑡) = 𝑥1 (𝑡) + 𝑥2 (𝑡) + 𝑥3 (𝑡) + 𝜂 (𝑡)
𝑥1 (𝑡) = e−0.03𝑡 cos

[

2𝜋
(

1.3 + 25𝑡 + 4𝑡2 − 0.8𝑡3 + 0.07𝑡4
)]

𝑥2 (𝑡) = e−0.06𝑡 cos
[

2𝜋
(

2.6 + 40𝑡 + 8𝑡2 − 1.6𝑡3 + 0.14𝑡4
)]

𝑥3 (𝑡) = e−0.09𝑡 cos
[

2𝜋
(

3.9 + 60𝑡 + 12𝑡2 − 2.4𝑡3 + 0.24𝑡4
)]

(14)

where 𝜂 (𝑡) ∼  (0, 0.5) represents the white noise.

Table 2
Normalized correlation coefficient of different modes for the square wave.

Mode 𝜆𝐴𝐶𝑀𝐷 𝜆𝐹𝐴𝐶𝑀𝐷 Harmonic order

1 1 1 1
2 0.3178 0.3178 3
3 0.2064 0.2064 5
4 0.1450 – 7
5 0.1217 – 9
6 0.1139 – 11

7 0.1070 – 13

The decomposition plots of all the algorithms are shown in Figs. 8,
9, 10, 11, 12, and 13, respectively. Even if IAs and IFs are time-varying
of these three modes, all the methods except for FACMD and ACMD
perform rather poorly. In view of the time-varying property, VMD
assumes each mode to be mostly compact around a center pulsation,
which limits its ability to track time-varying signals. On the contrary,
the cores of FACMD, which are AM-FM modes, make FACMD suitable
to express such signals.

In order to quantify the performances of these methods, their cor-
responding running time and errors are summarized in Table 1. The
smaller these two indices are, the better performance the corresponding
method has. The error is calculated as ∑𝐾

𝑖
∑𝑁
𝑗
|

|

|

𝑥𝑖,𝑗 − 𝑢𝑖,𝑗
|

|

|

, where 𝐾 = 3
and 𝑁 denotes the length of modes; 𝑥𝑖,𝑗 and 𝑢𝑖,𝑗 stands for the modes
obtained by decomposition and real modes in the signal, respectively.
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Fig. 3. ACMD decomposition results of the square wave signal. Red dashed lines and blue solid lines represent the real sub-signals contained in 𝑥(𝑡) and the modes obtained by
decomposition, respectively . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 4. VMD decomposition results of the square wave signal. Red dashed lines and blue solid lines represent the real sub-signals contained in 𝑥(𝑡) and the modes obtained by
decomposition, respectively . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

In summary, the merits of FACMD contain at least two aspects: (i) The

proposed FACMD can adaptively determine the mode number while the

other approaches do not. (ii) FACMD outperforms in decomposition

quality while the others often suffer from mode-mix or failure. It is

6



Q. Chen, J. Chen, X. Lang et al. Control Engineering Practice 97 (2020) 104307

Fig. 5. ITD decomposition results of the square wave signal. Red dashed lines and blue solid lines represent the real sub-signals contained in 𝑥(𝑡) and the modes obtained by
decomposition, respectively . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. LMD decomposition results of the square wave signal. Red dashed lines and blue solid lines represent the real sub-signals contained in 𝑥(𝑡) and the modes obtained by
decomposition, respectively . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 7. EMD decomposition results of the square wave signal. Red dashed lines and blue solid lines represent the real sub-signals contained in 𝑥(𝑡) and the modes obtained by
decomposition, respectively . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 8. FACMD decomposition results of the time-varying signal. Red dashed lines and blue solid lines represent the real sub-signals contained in 𝑥(𝑡) and the modes obtained by
decomposition, respectively . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 9. ACMD decomposition results of the time-varying signal. Red dashed lines and blue solid lines represent the real sub-signals contained in 𝑥(𝑡) and the modes obtained by
decomposition, respectively . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 10. VMD decomposition results of the time-varying signal. Red dashed lines and blue solid lines represent the real sub-signals contained in 𝑥(𝑡) and the modes obtained by
decomposition, respectively . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 11. ITD decomposition results of the time-varying signal. Red dashed lines and blue solid lines represent the real sub-signals contained in 𝑥(𝑡) and the modes obtained by
decomposition, respectively . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 12. LMD decomposition results of the time-varying signal. Red dashed lines and blue solid lines represent the real sub-signals contained in 𝑥(𝑡) and the modes obtained by
decomposition, respectively . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 13. EMD decomposition results of the time-varying signal. Red dashed lines and blue solid lines represent the real sub-signals contained in 𝑥(𝑡) and the modes obtained by
decomposition, respectively . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

noticeable that when the white noise 𝜂 (𝑡) in Eqs. (13) and (14) becomes
colored noise 𝑐𝜂 (𝑡), FACMD can still maintain the best decomposition
performance. The colored noise 𝑐𝜂 (𝑡) is generated by passing white
noise through the filter 1∕

(

1 − 0.7𝑧−1
)

(Li, Wang, Huang, & Lu, 2010;
Srinivasan & Rengaswamy, 2012). In addition, unlike the empirical ITD,
LMD, and EMD without strong theoretical basis, FACMD is built upon
a mature theory and is solved using an optimization scheme. More
comparisons on the running time of FACMD and ACMD are provided
in Section 5.

3. Oscillation detection

As the proposed FACMD can well decompose the process variable
into several significant modes, the next step is to find out which modes
have oscillations. To select significant modes and remove the normal
operation signals, here the testing significance of oscillation in both
time and frequency domains by the consistency function (Wardana,
2015) and the sparseness index (Srinivasan & Rengaswamy, 2012),
respectively, are used.

3.1. Oscillation index

The consistency function (Wardana, 2015) is a simple statistics
which can quantify the probability of oscillation occurrence for the sig-
nificant modes. The normalized auto-covariance correlation coefficient,
ACF, is first calculated based on the measurement, given by

𝐴𝐶𝐹𝑥𝑚 = 1
𝑁𝜎2

𝑛−𝜈
∑

𝑛=1
𝑥𝑚 (𝑛) 𝑥𝑚 (𝑛 + 𝜈) (15)

where 𝜎2 is the measurement variance; 𝜈 and 𝑁 are the time lag and
the length, respectively. The interval of two neighbor zero crossings
(𝑧𝑖𝑚, 𝑖 = 1, 2,… , 𝑁𝑚) represents a half-periods of the oscillation (𝑇 𝑖𝑚, 𝑖 =

1, 2,… , 𝑁𝑚), i.e. 𝑇 𝑖𝑚 = 2𝑧𝑖𝑚, where 𝑁𝑚 is the total number of intervals.
The consistency function of Eq. (15) can be provided by

𝑐𝑚 =
𝑢𝑇𝑚 − 𝜎𝑇𝑚

𝑢𝑇𝑚
(16)

where 𝑢𝑇𝑚 and 𝜎𝑇𝑚 are the mean and the standard deviation of 𝑇 𝑖𝑚,
respectively. Eq. (16) clearly indicates that the corresponding variance
will be large, resulting in 𝑢𝑇𝑚 − 𝜎𝑇𝑚 is less than 𝑢𝑇𝑚 if the intervals
(𝑧𝑖𝑚, 𝑖 = 1, 2,… , 𝑁𝑚) are not uniform. Conversely, the variance (𝜎𝑇𝑚 ) is
small and it would approach 0; 𝑐𝑚 is approximately equal to 1. Thus, the
more regular the oscillation period is, the closer to 1 the index (𝑐𝑚) is.
In this paper, only modes with 𝑐𝑚 > 𝜇𝑐 are retained for further analysis,
where 𝜇𝑐 = 0.95 is recommended (Wardana, 2015).

The ideal oscillatory signal should have one peak only at the specific
frequency (𝑋𝑚) while it has zero magnitude at all the other frequencies.
To confirm the presence of oscillations in the frequency domain, the
vector containing the magnitude of the oscillatory signal at various
frequencies obtained from Fourier transform should be sparse. Its mag-
nitude of the energy ratio can be measured by the sparseness index (SI)
(Srinivasan & Rengaswamy, 2012), given in Eq. (17).

𝑆𝐼𝑚 =

√

𝑁 −
(

∑𝑁
𝑖=1

|

|

𝑋𝑖
𝑚
|

|

∕
√

∑𝑁
𝑖=1

|

|

𝑋𝑖
𝑚
|

|

2
)

√

𝑁 − 1
(17)

where 𝑋𝑖
𝑚 is the frequency response of 𝑥𝑚 and 𝑁 is the length of the

vector. Eq. (17) indicates that 𝑆𝐼𝑚 = 1 if there is only one peak in the
spectrum 𝑋𝑚 and zero magnitudes are zeros at all the other frequencies.
In the other extreme condition, 𝑆𝐼𝑚 = 0 when the amplitude at each
frequency is equal and non-zero (such as white noise). Thus this index
(𝑆𝐼𝑚) is used to represent the sparsity of spectrum. The sparser the
spectrum is, the more obvious the peak value is. A clear peak in the
spectrum corresponds to the confirmed oscillations in the time domain.
In this paper, if a PV contains the modes with 𝑆𝐼𝑚 > 𝜇𝑆𝐼 , then the
oscillations are detected and the corresponding loop is thought to be
oscillatory. According to Aftab et al. (2017), 𝜇𝑆𝐼 = 0.58 is adopted.
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Fig. 14. Residual energy ratio of the normal and square (oscillating) cases . (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

3.2. Discussion on thresholds

A total of four thresholds is used in the previous sections, including
the energy ratio threshold 𝜇𝑛, the normalized correlation coefficient
threshold 𝜇𝜆, the consistency function threshold 𝜇𝑐 , and the sparseness
index threshold 𝜇𝑆𝐼 . The first two thresholds (𝜇𝑛 and 𝜇𝜆) measure the
relationship between the modes and the original signal. They can be
changed with different decomposition algorithms while the other two
(𝜇𝑐 and 𝜇𝑆𝐼 ) only quantify the oscillation degree of a single time series
itself regardless of the way the series generates. Their default settings
are briefly discussed below.

3.2.1. Energy ratio threshold (𝜇𝑛)
The energy ratio index (Eq. (12)) is adopted to remove the normal

mode whose process values should be a constant theoretically from
the measured signals. However, because of the presence of noise in
the actual industrial plant, the normal process values are usually con-
taminated by noise, which makes the energy ratio index unreliable to
distinguish the normal from the oscillating conditions with naked eyes.
Since ACMD is an extended version of VMD, both of them have an
equivalent filter bank structure (Wang & Markert, 2016). If the process
signals have white noise (normal), the corresponding energy of these
modes will have almost equal energy. Thus the residual energy ratio
will approximate linear decay in the iteration procedure as shown in
Fig. 14. On the contrary, the difference in the energy values between
the modes is very large when oscillations occur, which leads to the
rapid decay of the residual energy ratio. It could be observed that
𝜇𝑛 = 0.9 can well separate the normal from the oscillating conditions
with large margins. In addition, the vanilla ACMD decomposes the
normal case into too many redundant components while the proposed
FACMD can successfully avoid this drawback by terminating the outer
loop prematurely. This is also one of the acceleration principles of the
proposed FACMD.

3.2.2. Correlation threshold (𝜇𝜆)
The normalized correlation coefficient (Eq. (11)) is used to discard

the spurious modes generated by decomposition. Its threshold is a
trade-off between the number of discarded modes and avoiding loss
of effective information. This threshold can be determined in a way
similar to Aftab et al. (2017). The tested signal is a square wave like
Eq. (13), but the order of harmonics is up to 13. The corresponding
normalized correlation coefficients of different modes are listed in

Table 2. It can be inferred that the threshold 𝜇𝜆 = 0.15 will enable the
proposed FACMD to characterize the fifth harmonic, which is sufficient
for oscillation detection and diagnosis (Aftab et al., 2017). In addition,
this threshold can avert over-decomposition by terminating the outer
loop prematurely, too. It is worth noting that more testings in Section 5
will validate their effectiveness fully although the thresholds 𝜇𝑛 and 𝜇𝜆
are discussed only in one typical example here.

3.2.3. Consistency function (𝜇𝑐) and sparseness index threshold (𝜇𝑆𝐼 )
As stated above, both the consistency function (Eq. (16)) and the

sparseness index (Eq. (17)) are not dependent on both the original sig-
nal and the decomposition algorithm. The existing conclusions (Aftab
et al., 2017; Wardana, 2015), i.e. 𝜇𝑐 = 0.95 and 𝜇𝑆𝐼 = 0.58, are adopted
directly in this paper.

Therefore, the procedure of the proposed oscillation detector can be
described as: Firstly, the process variable is decomposed into several
modes by the FACMD, and the normal signals are also removed. Then
the presence of oscillation can be identified and confirmed both in time
and frequency domains by the consistency function (Eq. (16)) and the
sparseness index (Eq. (17)), respectively. If the 𝑚th mode satisfies the
condition 𝑐𝑚 > 𝜇𝑐 or 𝑆𝐼𝑚 > 𝜇𝑆𝐼 , the oscillation is detected in the
corresponding loop. Otherwise, this loop is in the normal operation.
The illustrative examples are further discussed in Section 5.

4. Oscillation diagnosis

The previous section discussed the oscillation detection using the
proposed FACMD, which identifies the decomposed modes with oscil-
lation behaviors. Although the method assists in diagnosing the fault
cause, it may take a substantial amount of time and process expertise
before the fault is properly diagnosed. To effectively identify the fault
causes in the control loops, the nonlinearity-induced oscillations are
firstly detected by checking the frequency relationships among different
modes in this section. After the modes related to nonlinear oscillations
are removed, the retained oscillatory modes are further classified into
two types of linear oscillations, i.e. external harmonic disturbances or
oscillations induced by poor controller tuning, by a hypothesis test.

4.1. Diagnosis of nonlinear oscillations

Oscillations caused by nonlinearity, such as control valve stiction,
have the distinct property of being nonlinear, which makes them
distinguishable from the other types of oscillations (Choudhury, Shah,
& Thornhill, 2008). Proceeding from the fact that nonlinearity-induced
oscillations contain higher order harmonics (Aftab et al., 2017), the
nonlinearity can be identified by checking the frequency relationships
among different modes. According to Aftab et al. (2017), it should be
noted that the mode containing the fundamental frequency of oscilla-
tions has a higher correlation with the decomposed process variable
than its harmonics, i.e.

𝜆𝑓 > 𝜆ℎ𝑖 , 𝑖 ∈ Z+ (18)

where 𝜆𝑓 and 𝜆ℎ𝑖 represent the normalized correlation coefficient of
fundamental and the 𝑖th order harmonic mode, respectively. The cor-
relation coefficient can be calculated by the input 𝐼𝐹𝑖, which is the
instantaneous frequency of oscillatory modes obtained from Algorithm
2. By a logical extension of this point, the correlational relationship
of different order harmonics induced by the same nonlinearity source
must satisfy the following condition,

𝜆ℎ𝑖+1 < 𝜆ℎ𝑖 , 𝑖 ∈ Z+ (19)

where 𝜆ℎ𝑖 and 𝜆ℎ𝑖+1 stand for the normalized correlation coefficient of
the 𝑖th and the (𝑖 + 1)th order harmonics, respectively. Thus, if two
modes meet Step 5 in Algorithm 3 instead of the condition in Eq. (19),
they may be caused by different nonlinear sources. The above two
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Fig. 15. External harmonic disturbance and its ACF.

conditions (Eqs. (18)–(19)) are able to distinguish nonlinearity-induced
oscillations arising from multiple sources.

Algorithm 3 depicts the corresponding diagnosis procedure in detail.
Although the proposed Algorithm 3 and the method in Aftab et al.
(2017) are all based on the decomposition modes, it is worthy of
pointing out that two things are different in substance. Firstly, Algo-
rithm 3 is based on the instantaneous frequency of the whole time
to examine the frequency relationship among different modes. While
the MEMD-based technique just estimates the frequency by calculating
11 successive zero-crossings. This means the diagnosis results of the
proposed Algorithm 3 are much more accurate and reliable. Secondly,
MEMD lacks the theoretical principle. Its performance and efficiency
highly depend on the projection number and the direction. These
problems still have not been solved (Lang, Zheng et al., 2018). Instead,
FACMD is computationally efficient and theoretically well-founded.

4.2. Diagnosis of linear oscillations

If the oscillatory modes obtained by FACMD are not induced by
nonlinearities, they would be considered as linear oscillations. Because
of the effect of noise, the time series plot of an external harmonic
disturbance is similar to that of an oscillation introduced by poor con-
troller tuning (Figs. 15 and 16). This makes these two different types of
oscillations indistinguishable in the time domain. However, in Fig. 15,

ACF of the external harmonic disturbance is constantly oscillating while
that of the other signal fades away after a few lags. In Fig. 16, the
poor controller tuning induced oscillation has a varying amplitude in its
corresponding ACF (Naghoosi & Huang, 2014b). Naghoosi and Huang
(2014b) showed that an oscillation caused by poor controller tuning
has different autocorrelation functions (ACFs) (Eq. (15)) (15) from
an external harmonic disturbance with the same frequency. Based on
these two different characteristics of ACF, an automatic and reliable
hypothesis test is developed to diagnose which type of linear oscillation
occurs.

The ACF of an external harmonic disturbance cos (2𝜋𝜔𝑡) with noise
can be predicted as

𝑝𝑟
𝑁 − 𝜐
𝑁 − 𝜐𝑟

cos (2𝜋𝜔𝜐) (20)

where 𝑝𝑟 is the peak value in ACF and 𝜐𝑟 is its corresponding time lag.
The decay caused by the estimation technique results in the difference
between the peaks. To compensate the difference, Naghoosi and Huang
(2014b) proposed to compare the peak value at the larger lag (𝑝2) with
the adjusted peak value (𝑝𝑎1) at the smaller time lag (𝑝1), in which 𝑝𝑎1 is
provided by:

𝑝𝑎1 = 𝑝1
𝑁 − 𝜈𝑝2
𝑁 − 𝜈𝑝1

. (21)

Thus, 𝑝2 − 𝑝𝑎1 will be no longer affected by the decay induced from
estimation. Also, it follows the normal distribution, given by

𝑝2 − 𝑝𝑎1 ∼ 𝑁
⎛

⎜

⎜

⎝

0, 1
𝑁

(

𝜎2𝑛𝑜𝑖𝑠𝑒
𝜎2𝑛𝑜𝑖𝑠𝑒 + 𝜎

2
ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐

)2
⎛

⎜

⎜

⎝

1 +

(

𝑁 − 𝜐𝑝2
𝑁 − 𝜐𝑝2

)2
⎞

⎟

⎟

⎠

⎞

⎟

⎟

⎠

. (22)

If the estimation of the factor 𝜎2𝑛𝑜𝑖𝑠𝑒∕𝜎
2
𝑛𝑜𝑖𝑠𝑒 + 𝜎2ℎ𝑎𝑟𝑚𝑜𝑛𝑖𝑐 is not avail-

able, an approximate confidence interval equal to 3
√

2∕
√

𝑁 can be
used to check if the differences between the peak values in ACF are
significant. The null hypothesis is that the oscillation is an external
harmonic disturbance, not poor controller tuning. If the difference
between two peaks in ACF does not exceed the significant level, the
oscillation is considered to be an external harmonic disturbance. If the
difference exceeds the significant level, the oscillation would not be
an external harmonic disturbance. The corresponding distributions of
the difference between the peak values in ACF for external harmonic

13



Q. Chen, J. Chen, X. Lang et al. Control Engineering Practice 97 (2020) 104307

Fig. 16. Poor controller tuning induced oscillation and its ACF.

Fig. 17. Distribution of the differences between the peak values in ACF (a) for poor tuning and (b) for external disturbance . (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

disturbances and poor controller tuning are depicted in Fig. 17(a)
and (b), respectively. It is clear that the distribution of the external
harmonic disturbance is normal while the others are not.

Based on the above hypothesis test, the retained oscillatory modes,

which are not induced by the nonlinearity, can be classified into two
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Fig. 18. Flowchart of the proposed FACMD-based detection and diagnosis algorithm.

different types of linear oscillations. The proposed method is an ex-
tension to Naghoosi and Huang’s method (Naghoosi & Huang, 2014b).
It can distinguish a combination of two types of linear oscillations
or multiple oscillations while Naghoosi and Huang’s work (Naghoosi
& Huang, 2014b) is limited to processing single linear oscillation.
Recently, Naghoosi and Huang also proposed a wavelet-based method-
ology to detect and characterize multiple oscillations (Naghoosi &
Huang, 2017), but the experimental studies in this paper show that the
proposed FACMD scheme outperforms Naghoosi and Huang’s method
in terms of diagnosis accuracy and the automatic level. Although
the similar work based on VMD (Dewa et al., 2018) can diagnose
multiple oscillations, it has at least three shortcomings. Initially, only
two modes of VMD are utilized, which results in information loss.
Secondly, the performance of VMD highly depends on its parameters
(mode number and penalty coefficient). Last, the basic mode of VMD
is 𝑎 (𝑡) cos (𝜔𝑡), in which 𝜔 represents the center frequency and it is a

constant. Thus 𝜔 is essentially limited in its ability to accurately express
time-varying signals; particularly, the oscillations induced from poor
tuning vary with time. On the contrary, the FACMD is represented
by 𝑎 (𝑡) cos

(

2𝜋 ∫ 𝑡0 𝑓 (𝑠) 𝑑𝑠 + 𝜙
)

, where 𝑓 is a time-varying function well
suited to depict the complex signals with time-varying characteristics.

To sum up, the components (the controller, the control valve, the
process, and the sensor) in the feedback control loops may all suffer
from certain abnormalities. The problems may cause degradation of
the control performance, such as a large variation of process variables,
loop oscillations. The proposed framework for oscillation detection
and diagnosis is depicted in Fig. 18. In the oscillation detection, the
process variable is decomposed by FACMD into several significant
modes and the oscillatory ones are identified by the consistent function
(Eq. (16)) and the sparseness index (Eq. (17)). In oscillation diagno-
sis, the nonlinearity-induced oscillations are detected by Algorithm 3
using higher order harmonics; the retained linear oscillating modes
are further distinguished by a hypothesis test of normal distribution.
With the above procedure, the underlying sources of the problematic
control performance based on the outputs of all the monitors can be
systematically and clearly determined.

5. Case studies

5.1. SISO feedback control loop

In order to show the high computational efficiency of FACMD
and validate the effectiveness of the proposed detection and diagnosis
methodology, a simulated single input and single output (SISO) closed-
loop system is borrowed from Aftab, Hovd, Huang, and Sivalingam
(2016), Aftab et al. (2017) and displayed in Fig. 19. The nonlinearity
is modeled by the two-parameter valve stiction model (Choudhury,
Thornhill, & Shah, 2005) with stickband (𝑆 = 7) and slip jump (𝐽 = 5)
and the plant transfer function is 𝐺 (𝑠) = 2.25𝑒−3𝑠∕4.54𝑠+1. The process
is regulated by a PI controller and a white noise with variance 0.1 is
added to its outputs. Six different cases are studied successively in total,
including (i) a normal condition, (ii) external disturbances, (iii) poor
tuning, (iv) combination of external disturbances and poor tuning, (v)
nonlinearity/stiction, and (vi) stiction with external disturbances. Their
corresponding responses of process variables in all cases are shown in
Fig. 20.

(i) Normal operation
In this case, the PI controller parameters are tuned as 𝐾𝑐 = 0.1 and

𝐼 = 0.5, which makes the loop work in the normal condition. The top of
Fig. 20 displays its corresponding time series of the controlled variable.
The detection results of the first 3 modes by the proposed FACMD are
listed in Table 3. It is concluded that no oscillation is detected in this

Fig. 19. Simulated SISO control loop.
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Fig. 20. (a) and (b) show data of six different cases in the simulated SISO system.

loop; thus the proposed method is capable of identifying the normal
condition correctly.

(ii) External disturbance
Assume that an external disturbance is a sinusoid signal with

0.0175 Hz. The external harmonic disturbance of the controlled vari-
able causes fluctuations of the control loop. The system response and
the decomposition results are shown in Fig. 21, respectively. It is
apparent that only one mode is extracted as an oscillating component
because of both its consistent function 𝑐𝑚 > 𝜇𝑐 and sparseness index
𝑆𝐼𝑚 > 𝜇𝑆𝐼 in Table 3. In the following linear oscillation testing, the
hypothesis testing result (as shown in the 2nd case of Table 4) does

not reject the null hypothesis, so the presence of presupposed external
disturbance (with frequency approximating 0.175 Hz) is confirmed
clearly.

(iii) Poor tuning
In this scenario, the controller parameters are tuned as 𝐾𝑐 = 0.1

and 𝐼 = 1.8 to generate another type of linear oscillation, which can
be observed at the top of Fig. 22. In contrast to the normal case, this
controller has an excessive integral action. The corresponding decom-
position graphs are also depicted in Fig. 22. From the results in Table 3,
it can be seen that the consistency functions and sparseness indices of
all the three modes excess the prescribed thresholds, which means they
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Fig. 21. Decomposition results of external disturbances.

Fig. 22. Decomposition results of poor tuning.

are oscillating components. Since the frequencies of mode 1, 2, and 3
are very close (as shown in Table 4), they can be combined together
to carry out hypothesis testing. The conclusion supports the rejection
of the null hypothesis, and it can be inferred that the oscillation is
introduced by poor controller tuning.

(iv) External disturbance and poor tuning

This example consists of two types of linear oscillations, i.e. the
combination of Case (ii) and (iii). Fig. 23 shows the decomposition
outputs and the corresponding detection. Since both two oscillation
indices of these four modes in Table 3 exceed the prescribed limits,
they are diagnosed in accordance with Fig. 23. Firstly, no harmonics are
captured, so the presence of nonlinearity is excluded. Like Case (iii), the
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Fig. 23. Decomposition results of the combination of external disturbances and poor tuning.

Fig. 24. Decomposition results of valve stiction.

frequencies of mode 1, 3, and 4 are very close; they are added together
for linear hypothesis testing. The results in Table 4 show that 𝑥2 accepts
the null hypothesis while the others reject the null hypothesis; i.e. 𝑥2

is an external disturbance while the other three modes are oscillations
caused by poor controller tuning. Therefore, these conclusions validate
the ability of the proposed method to distinguish two types of linear
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Fig. 25. Decomposition results of valve stiction with external disturbances.

Table 3
Detection results of the simulated SISO loop.

Case Mode 𝐸𝑅𝑚 𝜆𝑚 𝑐𝑚 𝑆𝐼𝑚 Oscillation?

Normal
𝑥1 1 – – –

No𝑥2 0.9694 – – –
𝑥3 0.9482 – – –

Ext dist 𝑥1 1 1 0.9991 0.9948 Yes

Poor tuning
𝑥1 1 1 0.9814 0.8740

Yes𝑥2 0.2260 0.2810 0.9618 0.8716
𝑥3 0.1803 0.2035 0.9598 0.8636

Ext dist +
poor tuning

𝑥1 1 1 0.9785 0.8337

Yes𝑥2 0.3043 0.3743 0.9969 0.9954
𝑥3 0.2085 0.2837 0.9619 0.8700
𝑥4 0.1664 0.2063 0.9624 0.8704

Stiction 𝑥1 1 1 0.9953 0.9686 Yes
𝑥2 0.0823 0.1687 0.9958 0.9195

Stiction+
ext dist

𝑥1 1 1 0.9951 0.9649
Yes𝑥2 0.1264 0.2369 0.9986 0.9359

𝑥3 0.0775 0.1559 0.9963 0.9102

oscillations when they occur simultaneously, which cannot be achieved
by most existing methods.

(v) Valve stiction
Fig. 24 displays the process variable and corresponding decomposi-

tion consequents for the dataset subject to valve stiction. Apparently,
the loop output mainly consists of two harmonic components. Fur-
thermore, based on the monitoring results of Tables 3 and 4, it can
be observed that the oscillating modes 𝑥1 and 𝑥2 are characterized
as the fundamental and the third order harmonics respectively by
Algorithm 3, which means the proposed framework is able to capture
the nonlinearity-induced oscillations correctly.

(vi) Valve stiction and external disturbance
The last case is the simulation in the abnormal condition with

both valve stiction and external disturbances (with 0.0239 Hz). Its

Table 4
Diagnosis results of the simulated SISO control loop.

Case Mode 𝜆𝑚 𝐼𝐹𝑚𝑒𝑎𝑛 𝐼𝐹𝑚𝑖𝑛 𝐼𝐹𝑚𝑎𝑥 Type Result

Normal – – – – – – Normal

Ext dist 𝑥1 1 0.0175 0.0175 0.0175 Ext dist Ext dist

Poor
tuning

𝑥1 1 0.0427 0.0415 0.0439 Poor tuning Poor
tuning𝑥2 0.2810 0.0468 0.0448 0.0488 Poor tuning

𝑥3 0.2035 0.0399 0.0378 0.0419 Poor tuning

Ext dist+
Poor
tuning

𝑥1 1 0.0427 0.0415 0.0439 Poor tuning Ext dist+
Poor
tuning

𝑥2 0.3743 0.0175 0.0174 0.0176 Ext dist
𝑥3 0.2837 0.0468 0.0448 0.0489 Poor tuning
𝑥4 0.2063 0.0399 0.0379 0.0418 Poor tuning

Stiction 𝑥1 1 0.0135 0.0133 0.0136 1st harmonic Stiction
𝑥2 0.1687 0.0404 0.0399 0.0410 3rd harmonic

Stiction
+ ext dist

𝑥1 1 0.0135 0.0133 0.0136 1st harmonic Stiction
+ ext dist𝑥2 0.2369 0.0239 0.0237 0.0241 Ext dist

𝑥3 0.1559 0.0404 0.0399 0.0409 3rd harmonic

corresponding time trend and decomposition performance are given
in Fig. 25, which indicates this process variable contains three com-
ponents. The analysis indices in Tables 3 and 4 clearly manifest that
this loop contains nonlinearity-induced oscillations plus linear exter-
nal disturbances (with frequency approximating 0.0239 Hz). Still the
proposed methodology can effectively differentiate multiple oscillations
composed by both linear and nonlinear causes.

The aforementioned results demonstrate that the proposed approach
is applicable for detecting and diagnosing different multiple oscilla-
tions. In the end, Table 5 records the corresponding running time of
both FACMD and vanilla ACMD in a different case,2 which indicates
that the raised FACMD is indeed faster than the latter.

2 FACMD and vanilla ACMD run ten times in the same conditions and their
mean values are used to reduce errors.
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Table 5
Running time of simulated SISO control loop (in seconds).

Method Normal Ext dist Poor tuning Ext dist +
poor tuning

Stiction Stiction
+ ext dist

FACMD 0.7719 0.0146 2.6268 0.8169 0.7938 0.5294
ACMD 2.9452 0.0158 5.9173 2.8027 2.6420 0.5998

Fig. 26. AWPS of stiction.

Recently the most important progresses in oscillation detection and
diagnosis have been done by Naghoosi and Huang (2017), which was
partly based on their previous work (Naghoosi & Huang, 2014b). To
make fairer comparisons of the proposed methodology, the method
of Naghoosi and Huang (2017) is also conducted for the above SISO
control loop in various fault conditions. The corresponding results are
listed in Table 6. It is observed that the wavelet-based method can
detect and diagnose two types of linear oscillations and their combi-
nation correctly. However, it lacks the ability to deal with complex
multiple linear/nonlinear oscillation. More specifically, (i) for the valve

Table 6
Detection and diagnosis results of the wavelet-based method (Naghoosi & Huang, 2017).

Case Scale Type Result

Ext dist 46 Ext dist Ext dist
Poor tuning 19 Poor tuning Poor tuning

Ext dist + poor tuning 47 Ext dist Ext dist+ Poor
tuning19 Poor tuning

Stiction 60 Nonlinear Nonlinear+ Linear20 Linear

Stiction + ext dist 60 Nonlinear Nonlinear+ Linear
(not ext dist)20 Linear (not ext dist)

Table 7
Detection results of the industrial single loop control system.

Case Mode 𝐸𝑅𝑚 𝜆𝑚 𝑐𝑚 𝑆𝐼𝑚 Oscillation?

Normal
𝑥1 1 – – –

No𝑥2 0.9511 – – –
𝑥3 0.9165 – – –

Ext dist 𝑥1 1 1 0.9979 0.9179 Yes
Poor tuning 𝑥1 1 1 0.9677 0.8884 Yes

Stiction 𝑥1 1 1 0.9809 0.9140 Yes
𝑥2 0.1853 0.2848 0.9630 0.8138

stiction case, the third order harmonic induced by nonlinearity is
characterized as linear oscillations; (ii) for the valve stiction with the
external disturbance case, in addition to the same problem described
in (i), the wavelet-based method also misses the detection of external
disturbances.

To explain the above issues, the method of Naghoosi and Huang
(2017) is briefly reviewed here. In the wavelet decomposition based
method, the oscillating scales are detected by the average of absolute

Fig. 27. Ratio curve for the stiction case at scale 20 . (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 28. AWPS of stiction with external disturbances . (For interpretation of the
references to color in this figure legend, the reader is referred to the web version
of this article.)

wavelet coefficients through time. The average of absolute wavelet co-
efficients is calculated as 𝑎𝑤𝑝𝑠𝑥 (𝑎) =

∑𝑁
𝑏=1

|

|

𝑤𝑥 (𝑏, 𝑎)||
2 ∕𝑁 and 𝑤𝑥 (𝑏, 𝑎) =

1
√

𝑎
∫ +∞
−∞ 𝑥 (𝑡)𝜓∗

(

𝑡−𝑏
𝑎

)

𝑑𝑡, where 𝑏 is the time point and 𝑎 is the scale.

Thus the local peaks in awps curve versus scale can correspond to the
oscillation frequencies. To detect phase coupling in variables, wavelet-
based bicoherence 𝑤𝑏𝑖𝑐2max

(

𝑎𝑜𝑠𝑐 , 𝑎2
)

is constructed. Using Chebyshev’s
inequality

𝑃 (|𝑥 − 𝜇| ≥ 𝑑𝜎) ≤ 1
𝑑2

(23)

Table 8
Diagnosis results of the industrial single loop control system.

Case Mode 𝜆𝑚 𝐼𝐹𝑚𝑒𝑎𝑛 𝐼𝐹𝑚𝑖𝑛 𝐼𝐹𝑚𝑎𝑥 Type Result

Normal – – – – – – Normal
Ext dist 𝑥1 1 0.0005 0.0004 0.0006 Ext dist Ext dist
Poor tuning 𝑥1 1 0.0178 0.0173 0.0184 Poor tuning Poor tuning

Stiction 𝑥1 1 0.0008 0.0008 0.0008 1st harmonic Stiction
𝑥2 0.2848 0.0024 0.0023 0.0025 3rd harmonic

where 𝜇 =
∑

𝑎1≠𝑎𝑜𝑠𝑐
∑

𝑎2≠𝑎𝑜𝑠𝑐 𝑤𝑏𝑖𝑐
2
𝑥
(

𝑎1, 𝑎2
)

∕𝑁 and 𝑥 = 𝑤𝑏𝑖𝑐2max
(

𝑎𝑜𝑠𝑐 , 𝑎2
)

.
If 𝑥 is significantly different from 𝜇, then the oscillation is induced by
nonlinearity. To distinguish two types of linear oscillations, the ratio
indicator is defined as

|

|

𝑤𝐴𝐶𝐹 (𝑏, 𝑎)|
|

2

|

|

|

|

𝑝𝑟
𝑁−𝜐
𝑁−𝜐𝑟

cos (2𝜋𝜔𝜐)
|

|

|

|

2
(24)

If the ratio is significantly different from 1, it is concluded that the
oscillation is regarded as poor controller tuning.

In this valve stiction case, the CWT coefficients of scale 20 corre-
spond to the third order harmonic, which is induced by the nonlin-
earity rather than linear oscillations. The wavelet-bicoherence based
hypothesis testing is based on measuring the relative magnitude of the
oscillating scale with other scales; however, the third order harmonic
has small energy (Fig. 26). Thus the nonlinear detection gets a false out-
come. In addition, because of the limitations of the wavelet transform,
the CWT coefficients of ACF at scale 20 are not a standard sinusoidal
sequence, which leads to unsatisfactory linear testing (Fig. 27). In the
valve stiction with the external disturbance case, in addition to the
same problem discussed in the valve stiction case, external disturbances
also cannot be detected. In Fig. 28, two distinct peaks are marked
(nonlinearity-induced oscillations), but there actually should be a peak
in the red area caused by the external harmonic.

Fig. 29. Industrial data of single loop control system.
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Fig. 30. Decomposition results of industrial case 2.

Fig. 31. Decomposition results of industrial case 3.

5.2. Industrial cases

Since the above simulations on the proposed methodology acts
well, more widespread industrial applications can be expected. This
subsection consists of two parts: (i) the proposed technique is used to
detect and diagnose oscillations for an industrial single loop control
system from the previous study (Jelali & Huang, 2009), and (ii) this
method is used for the root cause analysis of plant-wide oscillations.
In this industrial single loop control system, the proposed oscillation

detection and diagnosis are applied to four representative cases shown
in Fig. 29.

(i) Normal operation
The first industrial case is taken from a temperature control loop

in a building field without oscillations, i.e., this loop is in the normal
condition. The feature of interest in Table 7 is the energy ratio 𝐸𝑅𝑚.
Since 𝐸𝑅𝑚s of the first three modes exceed the preset threshold, there
is no oscillation in this loop.

(ii) External disturbances
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Fig. 32. Decomposition results of industrial case 4.

Fig. 33. Effects of changing parameters’ threshold for industrial cases (normal operation, external disturbances, poor tuning, and valve stiction). T and F are short for TRUE and
FALSE, respectively. The vertical red dotted lines show the default values . (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)

In this industrial case, the dataset is collected from a pressure

control loop in a refinery plant, which is known to be subject to

an external disturbance. Fig. 30 shows its decomposition results from

FACMD, and the indicators in Tables 7 and 8 clearly reveal the presence

23



Q. Chen, J. Chen, X. Lang et al. Control Engineering Practice 97 (2020) 104307

Table 9
Tuning reference for parameters.

Parameter 𝜇𝑛 𝜇𝜆 𝜇𝑐 𝜇𝑆𝐼
Reference (0.20, 0.91) (0.12,0.29) (0,0.96) (0,0.81)

Table 10
Detection and diagnosis results of plant-wide oscillations based on the proposed
method.

Tag Mode 𝜆𝑚 𝐼𝐹𝑚𝑒𝑎𝑛 𝐼𝐹𝑚𝑖𝑛 𝐼𝐹𝑚𝑎𝑛 Harmonic Results

2 𝑥1 1 0.0010 0.0010 0.0010 No Linear

3 𝑥1 1 0.0010 0.0010 0.0010 No Linear
𝑥2 0.1779 0.00034 0.00031 0.00036

4 𝑥1 1 0.0010 0.0010 0.0010 No Linear
𝑥2 0.2308 0.00032 0.00029 0.00034

10 𝑥1 1 0.0010 0.0010 0.0010 No Linear

11
𝑥1 1 0.0010 0.0010 0.0010 1st

Nonlinear𝑥2 0.5143 0.0002 0.00017 0.00023 –
𝑥3 0.2674 0.0030 0.0030 0.0030 3rd

13
𝑥1 1 0.0010 0.0010 0.0010 1st

Nonlinear𝑥2 0.3429 0.0020 0.0020 0.0020 2nd
𝑥3+4+5 0.5583 0.0048 0.0047 0.0048 –

19

𝑥1 1 0.0010 0.0010 0.0010 1st

Nonlinear
𝑥2 0.5024 0.00021 0.00018 0.00024 –
𝑥3 0.2494 0.0020 0.0020 0.0020 2nd
𝑥4 0.2803 0.00035 0.00031 0.00039 –
𝑥5 0.2246 0.0035 0.0035 0.0035 –

20 𝑥1 1 0.0010 0.0010 0.0010 No Linear

33 𝑥1 0.9793 0.0010 0.0010 0.0010 1st Nonlinear
𝑥2 0.2737 0.0020 0.0020 0.0020 2nd

34
𝑥1 1 0.0010 0.0010 0.0010 1st

Nonlinear𝑥2 0.5014 0.0020 0.0020 0.0020 2nd
𝑥3 0.3618 0.0050 0.0050 0.0051 5th

Fig. 34. Process schematic of plant-wide oscillations.

of an external harmonic disturbance with frequency approximating

0.0005 Hz.

Table 11
Detection and diagnosis results of plant-wide oscillations for wavelet-based and
MEMD-based methods.

Tag Wavelet-based MEMD-based

Scale Results IMF Results

2 13 Nonlinear – Linear

3 13 Nonlinear – Linear69 Linear

4 13 Linear – Linear72 Linear

10 13 Linear – Linear

11 11 Nonlinear
1

Nonlinear2
3

13 13 Nonlinear – Linear

19 13 Linear – Linear69 Linear

20 13 Nonlinear – Linear

33 64 Linear 1 Nonlinear2

34 13 Nonlinear
1

Nonlinear2
3

(iii) Poor tuning
In this case, the detection and diagnosis are performed on the

process variable data obtained from a level control loop. The decom-
position outputs of the process variable are displayed in Fig. 31. It is
known in advance that this loop is oscillating because of bad controller
tuning. Based on the normal distribution testing in the oscillatory mode
𝑥1, it can be concluded that the linear oscillations in this loop may be
caused by poor controller tuning. The related specific data are provided
in Tables 7 and 8.

(iv) Valve stiction
Fig. 32 exhibits the decomposition results of the proposed FACMD

for the dataset with valve stiction, which is sampled from a flow
control loop in a chemical process. The cases in Tables 7 and 8 present
the detailed information on FACMD-based oscillation detection and
diagnosis for this loop. From both tables, a third harmonic is detected.
Thus it can be concluded that this loop suffers from valve stiction.

Remark. The effects of changing the thresholds on the energy ratio
𝜇𝑛, the normalized correlation coefficient 𝜇𝜆, the consistency function
𝜇𝑐 , and the sparseness index 𝜇𝑆𝐼 are analyzed for various industrial
control loops. The corresponding results are given in Fig. 33. All these
four thresholds vary from 0 to 1. It can be seen that the results are
mostly stable with respect to these variations. The corresponding tuning
references are provided in Table 9.

(v) Plant-wide oscillations
Although the oscillation is usually generated in one loop, it often

propagates through the interconnected loops so that it causes plant-
wide oscillations (Lang, Zhang, Xie, Horch and Su, 2018). Therefore,
it is necessary to conduct the root cause analysis to find the root
cause of plant-wide oscillations before the control problem is resolved
via proper service and troubleshooting (Aftab, Hovd, & Sivalingam,
2018b).

To demonstrate the advantages of the proposed method in a real
plant application, the comparative studies on an industrial plant-wide
oscillation case are reported in this section. This industrial case is
taken from a southeast Asian refinery. This dataset is widely used as a
benchmark for plant-wide oscillation detection and diagnosis methods,
e.g., Aftab et al. (2017, 2018a) and Thornhill (2005). Figs. 34 and 35
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Fig. 35. Time trends from the industrial plant-wide oscillation case. The harmonic orders obtained by the proposed method are shown on the right-side.

show the process schematic and the corresponding time trends of a
group of variables, respectively. The results about the detection and
diagnosis results of plant-wide oscillations are given in Table 10. It is
observed that the proposed method can take Tag 11, 13, 19, 33, and
34 as nonlinearity-induced oscillations. The harmonic orders detected
by the proposed method are shown on the right side of Fig. 35. As
the disturbance influences the other loops such as temperature, and
composition, the waveform becomes more sinusoidal and more linear
because low-pass plant dynamics removes the higher harmonics and
destroys the phase coupling (Thornhill, Cox et al., 2003). It is found
that Tag 34 contains the highest order, which can be regarded as the
source of nonlinearities. Thus, Tag 34 is the most probable candidate
for the root cause in the corresponding loop. Also, this conclusion is in
agreement with previous studies (Thornhill, 2005).

Their detection and diagnosis results of the other methods, such
as wavelet-based (Naghoosi & Huang, 2017) and MEMD-based (Aftab
et al., 2017) algorithms, are listed in Table 11. In this table, the bold
labels indicate misjudgments. The wavelet-based method can identify
most nonlinear oscillations, but it is more likely to misjudge linear
oscillations as nonlinear oscillations, such as Tag 2, 3, and 20. The
performance of the MEMD-based method seems to perform better than
that of the wavelet-based one. There is one misdiagnosed case in Tag 13
as the second harmonic is not regular according to Aftab et al. (2017).

Remark. Over-decomposition is a common issue in various signal
decomposition methods (Dragomiretskiy & Zosso, 2013). Summing dif-
ferent modes with similar frequencies is a universal and effective way to
deal with this issue (Lang, Zhang et al., 2018; ur Rehman, Park, Huang,
& Mandic, 2013; Wu & Huang, 2009). In the plant-wide oscillation case,
it is found that only Tag 13 suffers from over-decomposition, which
means this issue is a non-frequent problem of the proposed method.
Fig. 36 shows the instantaneous frequencies of five modes contained in
Tag 13. In this figure, 𝑥3, 𝑥4, and 𝑥5 have similar frequency information.
It is reasonable to reduce the number of modes by the summation of
𝑥3, 𝑥4, and 𝑥5. Even though more modes are extracted, the oscillation
behaviors are similar. Therefore, the detection and diagnosis results are
still correct.

Fig. 36. The instantaneous frequencies of Tag 13 . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

6. Conclusions

This paper proposed the FACMD algorithm at first. Then the
methodology of detecting and diagnosing oscillations is devised based
on FACMD. It is able to identify and distinguish oscillations into
three common types, i.e. nonlinearity, external harmonic disturbance
and poor controller tuning. In addition to dealing with various sin-
gle/multiple oscillations in the SISO loop, it is capable of contributing
to analyzing the root cause for plant-wide oscillations. The proposed
methodology has better detection and diagnosis accuracy and a higher
level of automation than the existing methods, especially in processing
complex multiple oscillations. At last, a series of simulations and
industrial cases are provided to verify its effectiveness and advantages.
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The favorable outcomes in the testing cases indicate that the proposed
technique can be readily implemented in the industrial environment.
In the future, some issues about this method will still be considered,
for example, it cannot distinguish two types of linear oscillations when
the data length is too short.
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