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ABSTRACT A novel detector based on improved variational mode decomposition (VMD) is proposed to
detect the nonlinearity-induced oscillations. Despite its high adaptivity and frequency resolution, the effec-
tiveness of VMD highly depends on parameters, including mode number K , initial center frequency ωinit ,
and the penalty coefficient α. To tackle this problem, an improved VMD is proposed, which involves: 1) the
spectrum of phase-rectified signal averaging (PRSA) to determine optimal K , ωinit and 2) the summation
of permutation entropy (SPE) to optimize α, respectively. The presence of nonlinearity can be monitored
by investigating the relationships among different frequencies of the process variable (PV) in the control
loops. In addition, the oscillation detector based on the improved VMD is capable of distinguishing multiple
oscillations, even when both nonlinear and linear oscillations from different sources occur. The proposed
method is completely adaptive and data driven, which acts without a priori knowledge. The validity of the
raised approach is verified by a set of simulations as well as industrial applications.

INDEX TERMS Fault detection, nonlinearity-induced oscillation, variational mode decomposition, control
performance monitoring.

I. INTRODUCTION
Oscillation is one of the major issues in many process
industries, which may result in degradation of control loop
performance such as increased energy consumption, waste of
raw material, sometimes a less uniform end product and even
compromised stability and safety [1]–[3]. As is mentioned
in [4], nonlinearities, bad controller tuning and external dis-
turbances are three main causes of oscillation where 30%
of these control loops are oscillating because of the valve
problem. Therefore it is of crucial importance for control per-
formance maintenance to detect nonlinearity-induced oscil-
lations before implementing the performance-improvement
methods.

Many nonlinearity-induced oscillation detection meth-
ods have been developed over the decades. Horch [5]
first developed a simple stiction-detection method based on
cross-correlation function, which is mainly applicable to
non-integrating system. Later, Horch [6] proposed a more
generalized detector for integrating processes by utilizing
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the probability distribution of the second-order derivative
of the controlled variable. Then, Kano et al. [7] and
Maruta et al. [8] and Yamashita [9] proposed some MV-OP-
shape-basedmethods, whose applications rely on the assump-
tion that the valve position is available. Similarly, someworks
by combining PV-OP plots with bicoherence [10], bihocer-
ence [11] or surrogates analysis [12] are developed to detect
process nonlinearities in control loops. Many other data-
driven works including those based on Neural network [13],
curve fitting [14], area peak [15] are also reported in suc-
cession. Whereas all above methods are particularly sensitive
to the process non-stationarity. There are also other different
ways to detect stiction in control loops, which require either
detailed process knowledge, user interaction or rather special
process structures, such as those proposed by Deibert [16],
Hägglund [4], Ettaleb et al. [17] and so on.

In recent years, signal decomposition techniques have
become popular for process monitoring. Babji et al. [18]
first used Hilbert-Huang transform (HHT) to detect and diag-
nose nonlinearity in process data. Of late, Aftab et al. [19]
proposed a nonlinearity index, called the degree of nonlin-
earity (DNL), which provided not only the qualitative picture
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but also a measure to quantify the severity of nonlinear-
ity [19]. However, mode-mixing problem may result in false
reporting of the nonlinearity in the presence of noise and
multiple oscillations [20]. Aiming at addressing the above
limitation, Aftab et al. [21] exploited the noise assisted mul-
tivariate empirical mode decomposition (MEMD) to iden-
tify the harmonics and hence nonlinearities in control loops.
However, due to the dyadic filter bank property of MEMD,
this method requires the frequency difference of adjacent
harmonics exceeds twice, which may lead to loss of potential
harmonics.

Inspired by the fact that oscillations caused by nonlinear-
ities contain higher-order harmonics [22], variational mode
decomposition (VMD) [23] is improved in this work to detect
the presence of harmonics. Since VMD shows better per-
formance among other decomposition methods in process-
ing nonlinear and nonstationary signal, it has been widely
applied in numerous engineering applications ranging from
mechanical fault diagnosis [24], signal denoising [25] to
economics [26]. However, the performance of VMD is deeply
influenced by its parameters K , ωinit and α. Although swarm
intelligence algorithms were used to solve the tuning prob-
lem [24], [27], they only considered the effect of K and α.
More importantly, the existing fitness functions [24], [27]
were designed for special objects. The above two limita-
tions restricted the application reliability and scope of swarm
intelligence-based methods. Recently, Wardana [28] intro-
duced VMD into oscillation detection firstly, but their study
is primeval since they did not thoroughly consider the impact
of parameters.

Compared with existing works [21], [28], the contributions
of this paper are threefold:

(i) A joint framework, based on phase-rectified signal aver-
aging (PRSA) and summation of permutation entropy (SPE),
is established to tune VMD parameters which ensures good
performance for industrial application.

(ii) Based on the improved VMD, a novel oscillation detec-
tor is proposed which can distinguish multiple oscillations
and indicate the presence of nonlinearity.

(iii) Compared with existing methods including empirical
mode decomposition (EMD) [29], local mean decomposition
(LMD) [30] and MEMD, the improved VMD produces much
fewer redundant components and is less prone to end-effect
and mode-mixing.

The rest of this paper is organized as follows: Section II
provides an overview of VMD. The improved VMD is elab-
orated in Section III, followed by a comparison among the
improved VMD, VMD, EMD and LMD. In Section IV,
the proposed nonlinearity-induced oscillation detection algo-
rithm is described in detail. Simulations and industrial cases
are studied in Section V and VI, respectively. Conclusions are
drawn in Section VII.

II. OVERVIEW OF VARIATIONAL MODE DECOMPOSITION
VMD decomposes a real valued signal x(t) into a discrete
number of sub-signals (modes) uk (t) termed as intrinsic mode

functions (IMFs). For each mode uk (t), its analytic signal is
firstly calculated by means of Hilbert transform [31] to obtain
the unilateral frequency spectrum. Then this spectrum is
shifted to ‘‘baseband’’, by mixing with an exponential tuned
to the respective center frequency ωk . At last the bandwidth
is estimated through the H1 Gaussian smoothness. VMD
assumes that each mode uk (t) is mostly compact around its
center pulsation ωk , therefore VMD can be described as a
constrained variational problem as follows,

min
{uk (t)},{ωk }

{
K∑
k=1

∥∥∥∥∂t [(δ (t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2
2

}

s.t.
K∑
k=1

uk (t) = x (t) (1)

where the set of all modes and their corresponding center
frequencies are denoted as {uk (t)} = {u1 (t) , · · · , uK (t)}
and {ωk} = {ω1, · · · , ωK }, respectively.

A penalty term α and Lagrangian multiplier λ are adopted
to convert (1) into an augmented Lagrangian (2) that can
be iteratively solved by Alternating Direction Method of
Multipliers (ADMM), which is briefly described in Algo. 1.
More details can be found in Ref. [23].

L ({uk (t)} , {ωk} , λ)

= α

K∑
k=1

∥∥∥∥∂t [(δ (t)+ j
π t

)
∗ uk (t)

]
e−jωk t

∥∥∥∥2
2

+

∥∥∥∥∥x (t)−
K∑
k=1

uk (t)

∥∥∥∥∥
2

2

+

〈
λ (t) , x (t)−

K∑
k=1

uk (t)

〉
. (2)

Algorithm 1 Optimization of VMD

1: Initialize
{
û1k (ω)

}
,
{
ω1
k

}
, λ̂1, n← 0

2: repeat
3: n← n+ 1
4: for k = 1 : K do
5: Update ûk (ω) for all ω ≥ 0:

6: ûn+1k (ω)←
x̂(ω)−

∑
i<k û

n+1
k (ω)−

∑
i>k û

n
k (ω)+

λ̂n(ω)
2

1+2α(ω−ωnk)
2

7: Update ωk :

8: ωn+1k ←

∫
∞

0 ω

∣∣∣un+1k (ω)

∣∣∣2∫
∞

0

∣∣∣ûn+1k (ω)

∣∣∣2
9: end for
10: Dual ascent for all ω ≥ 0:
11: λ̂n+1 (ω)← λ̂n (ω)+ τ

(
x̂ (ω)−

∑
k û

n+1
k (ω)

)
12: until

∑
k

∥∥∥ûn+1k (ω)− ûnk (ω)
∥∥∥2
2
/
∥∥ûnk (ω)∥∥ < ε

III. IMPROVED VARIATIONAL MODE DECOMPOSITION
In this section, an improved VMD is presented to automat-
ically tune the parameters including (i) mode number K ,
(ii) initial center frequency ωinit and (iii) penalty
coefficient α.
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A. MODE NUMBER K
Unlike most existing decomposition algorithms including
empirical mode decomposition (EMD) and local mean
decomposition (LMD), the mode number K should be deter-
mined a priori for implementing VMD. A too large K gives
rise to overlaps among model central frequencies, while a too
small K may render the decomposition inadequate.

Since the modes obtained by VMD reveal the frequency
information contained in the investigated signal, the number
of peaks in the Fourier spectrum gives a rough indication
of K . However, Fourier spectrum is often contaminated by
noise and sensitive to non-stationary signal. To provide a
reliable spectrum for the selection of K , an effective sig-
nal enhancement approach, termed as phase-rectified signal
averaging (PRSA) [32], is employed in this study.

The basic PRSA principle is the aligning of sections of the
series relative to selected anchor points followed by a signal
averaging procedure. In the original PRSA, all samples are
clustered with respect to two specific instantaneous phase, 0
and π , which correspond to increments and decrements in the
signal x (t), respectively. Herein, the anchor points are taken
as the former cluster, i.e.

x (t) > x (t − 1) . (3)

PRSA proceeds as follows,
(i) Center the segments of length 2L + 1 on the anchor

points

x(tv−L), x(tv−L+1), · · · , x(tv+L−2), x(tv+L−1) (4)

where tv, v = 1, · · · ,M are the anchor points.
(ii) Average all these segments to obtain the PRSA average

x̄ (k)

x̄(k)=
1
M

M∑
v=1

x(tv+k), k=−L,−L+1, . . . ,L−2,L−1,

(5)

where anchor points located in the first and last L-sample
segments are disregarded.

(iii) Apply the classical power spectral density (PSD)
estimation technique on x̄ (k) to obtain the spectrum of
PRSA, denoted as PPRSA (f ), which is an enhanced spectro-
gram after noise cancellation.

The advantages of PRSA1 over the conventional spectral
analysis can be illustrated by testing the following signal,
which is contaminated by strong noise.

x (t) = 2 cos (2π × 1t)+ 1.8 cos (2π × 36t)+ η, (6)

where η ∼ N (0, 20). Fig. 1 compares the frequency content
of the original signal x(t) with that of its PRSA function.
Note that both power spectra show peaks for the characteristic
periodic components of the signal, but the peaks appear much
clearer in the phase-rectified spectrum (Fig. 1(b)) than in
the conventional power spectrum (Fig. 1(a)). It is concluded

1The parameters L and M of PRSA can be tuned according to [32].

that PRSA can obtain a better spectrum estimation for signal
with strong noise. According to [32], the improved signal-to-
noise ratio can be substantiated by the following two main
arguments.

Firstly, since all patches are aligned with respect to their
phase of oscillation (i.e., phase-rectified), the synchroniza-
tion of the signal patches is ensured, and all patches can
contribute to the PRSA signal and its power spectrum.
The second argument in favor of PRSA is based on the dif-
ferent scaling behaviors of the corresponding power spectra.
To show this difference, Bauer et al. [32] consider the proba-
bility pf of specific oscillating component with frequency f ,
xf (t) = Af sin(2π ft), occurring in x(t) = xt/1t affects
the PRSA x̄(t). Because of the linear averaging procedure,
the effect of xf (t) is proportional to its amplitude factor Af ,
i.e. pf ∼ Af . In addition, since anchor points are generated
primarily at or close to phase zero of the considered com-
ponent, the averaging procedure is phase-rectifying. Hence,
the probability to anchor the averaging procedure is pro-
portional to Af f ; Therefore pf ∼ A2f f in total. In x̄(t) the
amplitude of the considered spectral component with fre-
quency f is thus determined by A2f f instead of the Af , which
has direct enhancement for the power spectrum. Therefore the
frequency peaks are clearer in the PRSA spectrum.

It is convenient to give prior information about the
expected number of modes by counting the number of peaks
in spectrum, i.e.

K = Kpeak + 1, (7)

where Kpeak represents the number of peaks in the spectra
obtained by PRSA/FFT and ‘‘+1’’ term means a possible
noise mode.

B. INITIAL CENTER FREQUENCY winit
The original VMD initializes the center frequencies either
by an uniform distribution or zero values, and the influence
of ωinit on performance of VMD has not been explored.2

In this study, it is found that ωinit has a significant impact
on VMD over a large number of experiments. If ωinit and the
true frequency ω differ by an order of magnitude or more,
the performance of VMD will degenerate significantly, irre-
spective of the choice of K and α. In contrast, when ωinit is
close to the true frequencies, VMD is more likely to converge
to the correct frequencies.

To illustrate the impact of ωinit on VMD decomposition,
a typical signal x(t) is synthesized by harmonics as

x (t) = x1 (t)+ x2 (t)+ x3 (t)+ x4 (t)

=
4
π
sin (2π0.2t)+

4
3π

sin (2π0.6t)

+
4
5π

sin (2π t)+ η (t) (8)

where η ∼ N (0, 0.1) represents the Gaussian additive noise.
Obviously, x (t) contains three harmonics (x1 (t), x2 (t),
x3 (t)) and one noise component (x4 (t)).

2All frequency unit is Hz except special noted.
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FIGURE 1. (a): Original signal x(t) and its corresponding power spectrum. (b): The PRSA transform of original signal x(t) and its power
spectrum.

The mode number and true center frequencies are K = 4
and ω = {0.2, 0.6, 1, ω4} respectively, where ω4 is an
unknown center frequency relating to the noise. Two different
initializations are studied: ω1

init = {20, 60, 100, 200} and
ω2
init = {0.18, 0.55, 1.2, 3}. Fig. 2 (a) and (b) show the center

frequencies (ωvmd ) obtained by VMD versus α ∈ [50, 10050]
of the above two initial frequency sets. If all solid lines and
dashed lines of the same color coincide, it means that VMD
converges correctly.

Investigating Fig.2 reveals that there is an appropriate inter-
val for α between two vertical dotted lines in Fig.2(b) where
VMD gives rise to correct estimation of center frequencies.
In contrast, no α value in Fig.2(a) can ensure the reliable
center frequencies estimation.

The above study indicates that choosing proper ωinit is of
great importance for VMD. Since the peaks in the PRSA/FFT
spectrum represent the principal components in the signal,
it is reasonable to estimate ωinit using

ωiniti =

{
fpeaki , i = 1, 2, . . .K − 1
frand , i = K

(9)

where fpeaki corresponds to an approximate frequency of the
ith peak in the spectrum; frand is a random number larger than
fpeakK−1 , denoting the center frequency of noise.

C. PENALTY COEFFICIENT α
Compared with K and ωinit , α has a more complex influence
on the performance of VMD. According to our experiments,
the influence of α is closely related to both the signal and
the noise. Swarm intelligence algorithm [24], [27] has been
proven to be an effective way to determine α value. However,
swarm intelligence algorithm is restricted by twomain limita-
tions: (i) the obtained α value is usually locally optimal due to
the con-convexity of the fitness function and (ii) the existing
fitness function [24], [27] is designed for high-frequency
vibration signals from rotating machinery. In this section,

we propose a simple index based on permutation entropy to
tune α for slow-fluctuation industrial process.

1) PERMUTATION ENTROPY
Permutation entropy (PE) is a natural complexity measure for
time series proposed by Bandt and Pompe [33]. The advan-
tages of permutation entropy include its simplicity, extremely
fast calculation, robustness, and invariance with respect to
nonlinear monotonous transformations. The algorithm of PE
is briefly described as follows.

Given a discrete time series {x (t) , t = 1, 2, 3, . . . ,N }
with length N , it can be reconstructed in phase space as
Xd,τi = {x (i) , x (i+ τ) , . . . , x (i+ (m− 1) τ )}, i.e.

Xd,τ1 = {x (1) , x (1+ τ) , . . . , x (1+ (m− 1) τ )}
...

Xd,τi = {x (i) , x (i+ τ) , . . . , x (i+ (m− 1) τ )}
...

Xd,τN−(d−1)τ = {x (N − (d − 1) τ ) ,

x (N − (d − 1) 2τ) , . . . , x (N )}

(10)

where embedding dimension d and time delay τ are set to 5
and 1 by default. Accordingly, Xd,τi can be rearranged in an
increasing order as

{x(i+(j1 − 1)τ )≤x(i+(j2−1)τ ) ≤ . . . ≤ x(i+(jd−1)τ )}.

(11)

If two elements in each Xd,τi have the same value, e.g.
x (i+ (j1 − 1) τ ) = x (i+ (j2 − 1) τ ), then the quantities x
are sorted according to the values of their corresponding j,
namely if j1 < j2, then x (i+ (j1 − 1) τ ) ≤ x (i+ (j2 − 1) τ ).
Following, the vector Xd,τi can be mapped to a group of
symbols as

A (g) = {j1, j2, . . . jd } , g = 1, 2, . . . ,G (12)
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FIGURE 2. As the penalty term α value varies from 50 to 10050, the center frequencies obtained by VMD are shown by dashed lines. The solid
lines represent the real center frequencies and three colors of red, blue and black correspond to the first, second and third components of
x(t) in (8) respectively. (a) ω1

init =
{
20,60,100,200

}
. (b) ω2

init =
{
0.18,0.55,1.2,3

}
, and the appropriate interval of α value is drawn with two

vertical dotted lines.

where G ≤ d ! and d ! is the largest number of distinct
symbols. A (g) is one of the d ! permutations of d distinct
symbols, which is mapped to the d number symbols A (g) =
{j1, j2, . . . jd } in d-dimensional embedding space. When such
a permutation (denoted as π ) is considered as a symbol,
the reconstructed trajectory in the d-dimensional space is
represented by a symbol sequence. Assuming that the number
of different permutation is G, the relative frequency of each
permutation π can be defined by

pg (π) =
#
{
i|i ≤ N − (d − 1) τ, π ∈ Xd,τi

}
N − (d − 1) τ

. (13)

Then the permutation entropy is defined as the Shannon
entropy,

H (p) = −
G∑
g=1

pg ln
(
pg
)
. (14)

It is noticed that H (p) reaches its maximum value ln (d !),
when pg = 1/d !. Thus H (p) can be normalized by divid-
ing by ln (d !). For convenience, this normalization can be
replaced by

PE = H (p) / ln (N − d + 1) . (15)

In practice, PE ∈ [0, 1] can represent the randomicity and
dynamic changes of the time series effectively.When the time
series is regular, the complexity is lower and PE value is
smaller and the PE value of a monotone function is 0.

2) SELECTION OF PENALTY COEFFICIENT α AND
CASE STUDY
Note that if VMD works well with an appropriate value of α,
the PE values of its modes will be relative small. There-
fore a natural index, simple SPE (summation of permutation

entropy), is chosen to evaluate the fitness of α value.

SPEi =
K∑
k=1

PEk,i , (16)

where PEk,i is the PE value of uk (t) for αi.
Firstly, assume that the possible value of α is located in a

search interval [αmin, αmax] with step length (1α)3; Then run
VMD with αi = αmin+ i1α and calculate the corresponding
PEk,i, k = 1, 2, . . .K . αi corresponding to the minimum
of SPE is the optimal value. (17) is used as an example to
illustrate usage and effectiveness of the proposed index.

x (t) = cos (2π4t)+
1
2
cos (2π20t)+ η (t) , (17)

where η ∼ N (0, 0.1). Obviously, this signal contains two
harmonic modes (with center frequencies 4 Hz and 20 Hz,
respectively) and one noise mode. Without loss of generality,
herein the center frequencies of VMD are initialized by the
uniform distribution [23].

Fig. 3(a) shows the variation of the SPE against α values
from 100 to 10000 with interval 500. It is obvious that this
curve is convex approximately and the α value corresponding
to the minimum SPE is 7600. Running VMD with α =
7600, the satisfactory decomposition results are displayed in
Fig. 3(b). On the contrary, if SPE value of the selected α is
large, the corresponding performance of VMD will become
terrible, e.g. Fig. 4(a) (α = 100) and (b) (α = 10000).
It is clear that the obtained modes of both cases have great
distortions. To make the study more comprehensive and con-
vincing, considering the limiting case, where α value is set
to vary from 100 to 10000 with each interval 1. The trends of

3Based on a large number of experiments, αmin, αmax and 1α are rec-
ommended to be set to 100 ∼ 2000, 1000 ∼ 20000 and 100 ∼ 2000,
respectively.
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FIGURE 3. (a) The curve of SPE versus α; (b) when α = 7600, the decomposition results of VMD. The real modes (2nd to 4th rows) and
original signal x(t) (top row) are shown in and the obtained modes (2nd to 4th rows) and reconstructed signal (top row) are
displayed in .

FIGURE 4. (a) α = 100; (b) α = 10000. The real modes (2nd to 4th rows) and original signal x(t) (top row) are shown in and the
obtained modes (2nd to 4th rows) and reconstructed signal (top row) are displayed in .

the computed SPE and center frequencies against α values are
plotted in Fig. 5. It is observed that when α ∈ [620, 7828],
the decomposition results are pretty good. However, notice
that once α /∈ [620, 7828], the performance of VMD will
become poor immediately. This characteristic also implies
that the intelligent algorithm-based method is not suitable for
tuning α value.

The above simulations show that the proposed SPE index
has the ability of finding an appropriate α to ensure good
performance of VMD.

D. IMPROVED VMD AND COMPARATIVE STUDY
Combining section. III-A to III-C, the complete framework
of improving the original VMD is summarized in Algo. 2.
In this section, a signal (18) synthesized with harmonics is
used to demonstrate that the improved VMD outperforms the

standard VMD, EMD and LMD.

x(t)=
4
π

(
sin(2π10t)+

1
3
sin(2π30t)+

1
5
sin(2π50t)

)
+η(t)

(18)

where η (t) ∼ N (0, 0.1). According to Algo. 2 and Fig. 6,
the corresponding parameters of the improved VMD are
listed in Table. 1. The parameters of the standard VMD [23],
EMD and LMD are set to the default.4 Accordingly, modes
and center frequencies obtained by these four methods are
shown in Fig. 7 and Table 2, respectively.

Comparing Fig. 7(a) with (b), it is concluded that the
improved VMD decomposes the original signal correctly,

4The codes of EMD and LMD are available at http://perso.
ens-lyon.fr/patrick.flandrin/emd.html and https://ww2.mathworks.cn/
matlabcentral/fileexchange/37849-local-mean-decomposition, respectively.
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FIGURE 5. Trends of (a) center frequencies and (b) SPE, when the α varies from 100 to 10000 with interval 1. The curves in and
represent the true center frequencies and decomposed center frequencies, respectively. The coincidence of and intuitively means
that the decomposition is correct.

FIGURE 6. (a) Signal x(t) and its spectrum; (b) SPE.

Algorithm 2 Improved VMD
Input: x(t), αmin, αmax, 1α
Output: uk (t) and ωk , k = 1, 2, 3, . . . ,K .
1: Calculate PRSA/FFT of x(t);
2: Initialize K (by (7)), ωinit (by (9)), i = 0;
3: while i ≤ (αmax − αmin)

/
1α do

4: Run VMD with αi = αmin + i1α;
5: Calculate the SPEi;
6: i = i+ 1;
7: end while
8: Run VMD with the αi value corresponding to the mini-

mum of SPE;

whereas, both of the second mode u2 and third mode u3
obtained from the standard VMD present non-negligible
distortions. With respect to EMD, as depicted in Fig. 7(c),
the results are relatively poor, more specifically: (i) the

TABLE 1. Parameters of the improved VMD and standard VMD.

number of IMFs obtained by EMD is 10, which makes the
selection of effective IMFsmuchmore complicated; (ii) com-
pared with the improved VMD, EMD is more likely to be
affected by end-effect; (iii) mode-mixing occurs in EMD,
which is highlighted with ellipses; (iv) EMD needs additional
procedures (such as counting zero-crossings [21]) to estimate
the frequency intervals, while the improved VMD is able
to directly report the frequencies. Finally, the decomposed
results of LMD are shown in Fig. 7(d). It is observed that the
performance of LMD is far worse than other three methods,
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FIGURE 7. Signal in (18) decomposed by improved VMD, VMD, EMD and LMD. The blue solid lines ( ) represent modes obtained by
decomposition and red dotted lines ( ) are real modes. To show more clearly, only 1/4 of the original data is displayed. The pseudo
modes of the EMD/LMD are discarded since their correlation coefficients are small.

indicating that such method is not suitable for analyzing the
designed signal.

This study shows that the proposed improved VMD is
empirically a good choice for processing signals synthe-
sized by harmonics, which may facilitate the detection of
nonlinearity-induced oscillations.

IV. NONLINEARITY-INDUCED OSCILLATION DETECTION
Once x (t) is decomposed by the improved VMD, the cor-
responding center frequencies are also obtained. Then the
next step is to detect and distinguish the presence of lin-
ear and nonlinear oscillations. The idea that oscillations
caused by nonlinearities contain higher order harmonics is
explored by Thornhill et al. [22] and successfully applied by
Aftab et al. [21]. The harmonic detection method has
mathematical basis: according to Fourier theory, an ideal
square or rectangular wave can be regard as an infinite
sum of sinusoidal waves. Therefore, in frequency domain,
the frequency structure of a nonlinear oscillation, which is

generally shaped by square or rectangular wave, consists
of several harmonic frequencies corresponding to different
sinusoidal waves. As a result, the improved VMD is quite
suitable for dealing with the nonlinearity-induced oscillatory
signal.

A. DISCARDING PSEUDO MODES
Similar to EMD, it is inevitable for VMD to produce pseudo
modes. In order to obtain effective modes, the correlation
coefficient [34] of each mode uk (t) with the original signal
x (t) is calculated by:

ρk =
Cov (uk (t) , x (t))

σx(t)σuk (t)
, k = 1, 2, 3, . . . ,K , (19)

where Cov denotes the covariance, σx(t) and σuk (t) are the
standard deviations of the signal x(t) and the mode uk (t),
respectively, and K is the total number of modes. Then the
normalized correlation coefficient λk can be calculated for
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TABLE 2. The center frequencies obtained by improved VMD, VMD, EMD and LMD.

each mode:

λk =
ρk

max {ρ1, ρ2, . . . , ρK }
, k = 1, 2, 3, . . . ,K , (20)

for which the mode with λk > ηλ can be retained. In this
paper, the threshold ηλ=0.2 is determined empirically by a
large number of experiments.

Apart from the correlation coefficient, PE (15) is also
utilized to identify the effectivemodes. Since it is exceedingly
sensitive to noise [35], the PE of each mode can be used as an
auxiliary index to judge whether a signal component mainly
contains noise or not. Herein, only modes with h (p) ≤ µpe
and λk > ηλ are regarded to be effective, where the PE’s
threshold µpe = 0.4 is recommended by [35].

Algorithm 3 Nonlinearity-Induced Oscillation Detection

Input: � =
{
ω1
vmd , ω

2
vmd , . . . , ω

n
vmd

}
Output: ON and OL
1: Initialize ON = 0, OL = 0 and flag = 0;
2: for i = 1 : n− 1 do
3: j = i; ωbvmd is the first non-zero element in �, denoted

as ωbvmd = ω
j
vmd ;

4: for t = j+ 1 : n do
5: k = ωtvmd/ω

b
vmd ;

6: if k 6= 0 and |round (k)− k| ≤ µk then
7: flag = 1; ωtvmd = 0; ωjvmd = 0;
8: end if
9: end for
10: ON = ON + flag; flag = 0;
11: end for
12: OL equals to the number of non-zero elements in �;

B. NONLINEARITY-INDUCED OSCILLATION
DETECTION ALGORITHM
Based on the above statements, a novel nonlinear oscillation
detection algorithm is proposed. Firstly, the process variable
(PV) is decomposed by the improved VMD to obtain uk (t)
and ωk , k = 1, 2, 3, . . . ,K . Assume that totally n effective
modes are selected by λk and PE indices. The center fre-
quencies of these retained modes form an ordered set � ={
ω1
vmd , ω

2
vmd , . . . , ω

n
vmd

}
, where ω1

vmd < ω2
vmd < · · · <

ωnvmd , as the input of Algo. 3. The corresponding outputs are
ON andOL , denoting the number of nonlinearity and linearity
induced oscillations, respectively. The proposed detector is
summarized in Algo. 3.

TABLE 3. Detection results of square wave.

Remark 1: Algo. 3 can not only detect oscillations from
one single nonlinearity, but also distinguish multiple oscilla-
tions caused by different sources. µk = 0.2 is recommended
empirically in this paper.

V. SIMULATION STUDY
Two simulated tests including: (i) the square wave in
section III-D (18) and (ii) a simulated SISO feedback system
with valve stiction unit, are used to verify the effectiveness of
the proposed method.

A. SQUARE WAVE
The decomposition results obtained by the improved VMD
of this square wave are shown in Fig. 7 (a), and Table 3 lists
the corresponding outcomes. It shows that ω1

vmd = 9.8260,
ω2
vmd = 30.0623,ω3

vmd = 50.4824, i.e. the ordered set is� =
{9.8260, 30.0623, 50.4824}. Since ω2

vmd/ω
1
vmd = 3.0595 <

3.2 and ω3
vmd/ω

1
vmd = 5.1376 < 5.2, it is concluded that

ON = 1 and OL = 0, which means only one nonlinear
oscillation is presented in this signal. The underline structure
of the original signal confirms the validity of the proposed
detector.

B. SIMULATION OF VALVE STICTION
The purpose of this simulation is to demonstrate the appli-
cability of Algo. 3 in detecting the valve-stiction related
nonlinear oscillations. If the process oscillation is only due to
linear disturbance, the proposed method will not detect any
nonlinearity. On the contrary, if nonlinearity is detected in
the process output, it is highly possible that valve sticition
is presented.

The simulation example is borrowed from [21], where
oscillations from different sources in a SISO feedback system
(Fig. 8) are analyzed using the proposed method to search
signatures of harmonics or nonlinearities. The nonlinear-
ity is modeled by stiction using the two parameters model
from [36], with S = 7 and J = 5. The plant dynamics are
given by the following equation:
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TABLE 4. Detection results of SISO.

FIGURE 8. SISO feedback system (simulation example).

FIGURE 9. Time trends of SISO feedback system.

G (s) =
2.25

4.54s+ 1
e−3s. (21)

The corresponding nominal PI controller gains are Kc = 0.1
and Ki = 0.5. Gaussian noise with variance 0.1 is added
to PV.

Totally four cases, using PV data, are considered,
i.e., (i) linear oscillation subjected to an external sinusoidal
disturbance; (ii) oscillations due to the combination of poor
control tuning and external sinusoidal disturbance; (iii) oscil-
lations induced by valve stiction (nonlinearity); (iv) oscilla-
tions resulting from both nonlinearity and external sinusoidal
disturbance. The corresponding process outputs of these four
cases are shown in Fig. 9. The decomposition and monitoring

results for all cases are summarized in Fig. 14 and Table 4,
respectively.

1) EXTERNAL DISTURBANCE
In this case, the SISO feedback system is subjected to
an external sinusoidal disturbance with frequency ω =

0.08 rad/s ≈ 0.0127 Hz. Its PV data is shown in the
first row of Fig. 9 and the corresponding spectrum and SPE
trend are shown in Fig. 10. Thus, VMD is finally applied
with K = 2, ωinit = {0.01, 0.03}, α = 1100, where the
decomposition are shown in Fig. 14(a). The center frequen-
cies and normalized correlation coefficients are computed as
ωvmd={0.0126, 0.1517} and λ = {1, 0.0597}, respectively.
Since λ2 = 0.0597 < µλ, the second mode is abandoned as
a pseudo mode, only one mode is retained and no nonlinear
oscillation occurs. By comparing ω1

vmd = 0.0126 with ω ≈
0.0127, the result is highly consist with the data structure.

2) EXTERNAL DISTURBANCE AND POOR TUNING
In this case, the SISO feedback system is tuned to suffer
from the combination of poor controller tuning and external
sinusoidal disturbance (frequency ω = 1.74 rad/s ≈
0.2769 Hz ). Its PV data, spectrum and SPE trend are shown
in Fig. 9 (2nd row) and Fig. 10, respectively. Based on the
proposed framework, VMD is recommended to work with
K = 3, ωinit = {0.01, 0.28, 0.5}, α = 8100. The outputs of
the improved VMD are displayed in Fig. 14(b) and Table 4
(case 2). Clearly, the second mode is pseudo for its λ3 =
0.0986 < µλ. Since 6.2 < ω2

vmd/ω
1
vmd = 6.4731 < 6.8

and ω2
vmd = 0.2770 ≈ 0.2769, the two linear oscillations are

detected correctly.

3) NONLINEARITY/STICTION
In this case, a data-driven valve stiction model is embed-
ded into the SISO loop, whose PV data is shown in the
third row of Fig. 9. According to Fig. 12, VMD is recom-
mended to run with K = 3, ωinit = {0, 0.05, 1}, α =
12000. The corresponding results are depicted in Fig. 14(c)
and Table 4, i.e. ωvmd={0.0134, 0.0402, 0.1514} and λ =
{1, 0.2008, 0.0857}, where the third mode is abandoned as
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FIGURE 10. (a) Spectrum and (b) SPE trend for external disturbance case.

FIGURE 11. (a) Spectrum and (b) SPE trend for external disturbance and poor tuning.

a pseudo component. Because ω2
vmd/ω

1
vmd = 3.0035 < 3.2,

ON = 1 and OL = 0 are obtained based on Algo. 3,
concluding the presence of process nonlinearity.

4) STICTION AND EXTERNAL SINUSOIDAL DISTURBANCE
In this case, an external sinusoidal disturbance (frequency
ω = 1.74 rad/s ≈ 0.2769 Hz ) is added to the
system with stiction nonlinearity. This resulted PV series
is shown in the bottom of Fig. 9 and parameters of the
improved VMD are tuned as K = 4, ωinit = {0.01, 0.03,
0.27, 1}, α = 12000 according to the conclusions drawn
from Fig. 13. Table 4 lists the center frequencies ωvmd=
{0.0134, 0.0403, 0.2769, 0.3102} and the normalized cor-
relation coefficients λ = {1, 0.2059, 0.5313, 0.0810},
which suggests that only the first three modes can be retained.
As a result, ω2

vmd/ω
1
vmd = 3.0058 < 3.2 and 20.2 <

ω3
vmd/ω

1
vmd = 20.6408 < 20.8 are obtained. Such result indi-

cates that u1 and u2 are components of harmonics (ON = 1)

while u3 is induced by the external sinusoidal disturbance
( OL = 1). This case verifies that the proposed algorithm
is able to separate the sinusoidal disturbance as an additional
oscillation from the stiction induced oscillations.

Table 4 and Fig. 14 summarize the detection results of this
SISO system. These four experiments demonstrate that the
proposed method is able to not only identify the nonlinearity-
induced oscillations, but also separate the external sinusoidal
disturbance from nonlinearity-induced oscillations.

For further comparison, the same stiction model is ana-
lyzed by MEMD-based method proposed by [21], whose
results are listed in Table 5. ωvmd denotes the frequencies
of effective modes obtained by the improved VMD; λmemd ,
�̄, �min, �max represent the normalized correlation coeffi-
cient, mean, maximum, and minimum frequencies obtained
by MEMD, respectively. It is observed that both methods
have identified the same harmonic order, and all ωvmd val-
ues satisfy the condition �min ≤ ωvmd ≤ �max, which
further confirms the effectiveness of the proposed method.
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FIGURE 12. (a) Spectrum and (b) SPE trend for nonlinearity/stiction.

FIGURE 13. (a) Spectrum and (b) SPE trend for stiction and external sinusoidal disturbance.

Besides, the improved VMD based detector shows following
advantages: (i) the efficiency of MEMD is affected by its
multi-directional projection; (ii) the performance of MEMD
is prone to end-effect and mode-mixing. Both limitations of
MEMD have not been solved completely [37].

VI. INDUSTRIAL CASE STUDY
Since simulations on the proposed detector acts well, more
widespread applications can be expected. This method has
been successfully applied in detecting valve stiction for a
set of chemical data from [38]. Typically, two representative
cases are reported in this section to demonstrate its effective-
ness and advantages for industrial data.

A. CASE 1: FLOW CONTROL LOOP
This proposed detector is first performed on the data
obtained from a flow control loop in a refinery plant.
It is known a priori that this loop is suffered from
valve stiction [38]. The improved VMD is applied with

K = 3, ωinit = {0.01, 0.03, 0.05}, α = 8000 accord-
ing to Algo. 2. The effective modes obtained by improved
VMD, VMD, EMD and LMD are presented in Fig. 15.
Table 6 lists the detailed information about the detection
results.

Accordingly, u3 is abandoned as a pseudo component,
therefore ωivmd = {0.0059, 0.0187} is processed by Algo. 3.
Since ω2

ivmd/ω
1
ivmd = 3.1836 < 3.2, it is concluded that

the detected oscillations are caused by valve stiction problem
(ON = 1,OL = 0). The result is in agreement with EMD and
other reports [38]. Similar to section V, it is also observed that
each ωvmd obtained by the improved VMD satisfies�Emin ≤

ωivmd ≤ �Emax . However, the frequencies obtained by the
improved VMD are more accurate and direct than that of
EMD. Compared with the original VMD, due to the poor
decomposition performance as shown in Fig. 15(b), the center
frequency of the second mode u2 seriously deviates from
the correct value, which results in the failure of nonlinearity
detection. With regard to LMD-based detector, although it
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FIGURE 14. Decomposition results obtained by the improved VMD for SISO.

TABLE 5. Nonlinearity detection of [21] (MEMD) and the proposed method.

reveals the presence of nonlinearity in this loop, its moni-
toring results are not credible because of the severe adverse
impact of mode-mixing (as noted in Fig. 15(d)).

B. CASE 2: LEVEL CONTROL LOOP
This data set is sampled from a level control loop in a refinery.
Previous researches shown that a stiction (likely) is observed
in this loop [38]. Similar to the previous example, K = 3,
ωinit = {0.001, 0.003, 0.005}, α = 4000 are determined
by Algo. 2. Fig. 16 and Table 7 give the decomposition and

monitoring results from the improvedVMD,VMD, EMDand
LMD, respectively.

By comparing u2 with IMF4, it is evident that mode-
mixing occurs in the EMD method. It is observed that
ω2
ivmd/ω

1
ivmd = 3.0414 < 3.25 and 5.2 < ω3

ivmd/ω
1
ivmd =

5.6695 < 5.8, i.e. ON = 1 and OL = 1 in Algo. 3.
Thus there is not only a nonlinearity-induced oscillation,
but also a linear oscillation with frequency 0.0045 Hz in

5We show four figures after the decimal point. For example ω1ivmd =
0.00079225, ω2ivmd = 0.00240955 and ω3ivmd = 0.00449169 actually.
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FIGURE 15. Decomposition results of case 1: (a) improved VMD, (b) VMD, (c) EMD and (d) LMD.

TABLE 6. Monitoring results of case 1 by improved VMD, VMD, EMD and LMD.

this loop. On the contrary, the results of EMD do not detect
any linear oscillation component. As for VMD-based and
LMD-based technologies, both of them suffer serious
bankruptcy as displayed in Fig. 16 (b) and (d), which lead
to the wrong conclusions in Table 7.

The studies on these simulations and industrial cases
verify the applicability of the proposed approach on

nonlinearity-induced oscillation detection. Compared with
methods based on standard VMD, EMD, LMD and MEMD
[21], the proposed method shows following advantages:

(i) Compared with EMD, LMD andMEMD, due to the fact
that the improved VMD inherits the excellent characteristics
from VMD [23], it produces much fewer redundant modes
and is more robust to the sampling rate and noise;
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FIGURE 16. Decomposition results of case 2: (a) improved VMD, (b) VMD, (c) EMD and (d) LMD.

TABLE 7. Monitoring results of case 2 by the improved VMD, VMD, EMD and LMD.

(ii) The improved VMD can directly export accurate fre-
quencies contained in the original signal, while both EMD
and MEMD only estimate an approximate interval by using
zero-crossings.

(iii) Since the performance of EMD, LMD and MEMD
depend highly on searching extreme points, they are more
prone to exhibit end-effect and mode-mixing (such as

case 2), when processing square or rectangular wave signal
(nonlinearity-induced oscillations). In contrast, the improved
VMD avoids this shortcoming.

VII. CONCLUSION
In this paper, a novel method based on the improved VMD
is proposed to detect nonlinearity-induced oscillations in
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control loops. Firstly, it shows that the standard VMD
depends heavily on parameters including mode number K ,
initial center frequency ωinit and penalty coefficient α.
To address this problem, an improved VMD is proposed
which uses (i) spectrum to determine optimal K , ωinit and
(ii) SPE to optimize α. Following, based on the improved
VMD, a novel nonlinearity-induced oscillation detection
algorithm is developed, which can distinguish multiple oscil-
lations, even when both nonlinear and linear oscillations
from different sources occur. Finally, a series of simulations
and industrial cases verify the effectiveness and advantages
of the raised approach. However, the proposed VMD-based
methodology is validated only on time-invariant signals.
When dealing with time-varying series, it may need adjust-
ment. The proposed detector, as an univariate method, lacks
ability in detecting and diagnosing oscillations for plant-wide
oscillations.

The methodology provides a novel foundation for time-
frequency processing of the nonlinearity-induced oscilla-
tions, which may facilitate future refinement of oscillation
propagation analysis and root fault localization. Our future
works will focus on: (i) developing a framework to select
parameters of VMD for time-varying signals; (ii) isolating the
source of nonlinearity.
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