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a b s t r a c t 

In this paper, a novel Multivariate Nonlinear Chirp Mode Decomposition (MNCMD) is proposed. In con- 

trast to most existing multivariate time-frequency decomposition approaches, the proposed MNCMD is 

capable of handling time-varying signal efficiently in an elegant variational optimization framework. The 

multivariate nonlinear chirp mode is defined based on the presence of a joint or common instanta- 

neous frequency component among all channels of input signal. Then the objective function of MNCMD 

is defined as the sum of mode bandwidths across all signal channels. The alternate direction method of 

multipliers (ADMM) algorithm is employed to optimize the MNCMD problem. MNCMD can extract an 

optimal set of multivariate modes and their corresponding instantaneous frequencies without requiring 

more user-defined parameters than the original NCMD. The effectiveness and advantages of the proposed 

MNCMD are demonstrated by studying its mode-alignment, filter bank structure, quasi-orthogonality, the 

influence of channel number, noise robustness, and convergence. Specifically, we highlight the utility 

and superiority of the proposed method in three real-world applications, including the analysis of an 

oceanographic float position record (two-channel), the separation of α-rhythms in electroencephalogram 

(EEG) data (four-channel), and the detection of plant-wide oscillations in industrial control systems (nine- 

channel). 

© 2020 Elsevier B.V. All rights reserved. 
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. Introduction 

Many common data, such as those sampled from nature,

uman-beings, and industrial systems, contain valuable informa-

ion [1] . Generally, these data show nonlinear and nonstationary

haracteristics and are called nonlinear chirp signals (NCSs) [2] . It

s a challenging task to analyze them directly. The primary goal

f signal processing is to reveal these underlying information and

tructures. 

.1. Univariate signal processing 

The traditional methods focus on signal transformation. For ex-

mple, Fourier Transform (FT) enables us to analyze signals from

requency domain. Fourier-based analysis rules over linear time in-

ariant and stationary signal processing. However, due to fixed and

lobal basis functions, it only provides global frequency informa-

ion and thus lacks ability of characterizing time-varying frequency

ontents of NCSs. In order to obtain the time-frequency (T-F) infor-

ation of signals, it is necessary to change the way of global trans-

ormation to local transformation. Gabor [3] presented the short-

ime Fourier transform (STFT) to perform the joint analysis of time
∗ Corresponding author. Fax: 8657187951200. 
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nd frequency. But it cannot automatically adjust time window

nd frequency window. Cohen [4] developed an unified represen-

ation of time-frequency distribution, and the most important one

s Wigner-Ville distribution (WVD). Nevertheless, its T-F spectrum

s spoiled by the cross-term interference. Wavelet transform (WT)

5] was then established based on scale and time-shift joint anal-

sis and it became a powerful signal processing tool. Nevertheless,

he success of WT heavily depends on the manual selection of de-

omposition levels and the mother wavelet. 

Based on basis function expansion, the above traditional meth-

ds have the advantages of simplicity, uniqueness and symmetry,

ut they lack flexibility and are not adaptive amenable enough for

omplex signal analysis. Starting from empirical mode decompo-

ition (EMD) [6] , data-driven signal decomposition and T-F tech-

iques have become a research hotspot. They can act without a

rior on input data. Fig. 1 briefly summarizes the development of

he related approaches and the proposed method. A brief overview

s provided as follows. 

EMD can adaptively extract a set of oscillatory modes by sig-

al extrema and sifting process [6] . This method is not restricted

y Heisenberg uncertainty principle but lacks mathematical foun-

ation, and it is sensitive to noise and sampling. In order to

emedy EMD’s limitations, some modified versions are developed

n succession, such as ensemble EMD (EEMD) [7] and comple-

entary EEMD (CEEMD) [8] . In addition, some algorithms similar

https://doi.org/10.1016/j.sigpro.2020.107667
http://www.ScienceDirect.com
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Fig. 1. A brief list of signal decomposition methods. MNCMD is the proposed 

method in this paper; it is shown in the red dash box. (For interpretation of the 

references to colour in this figure legend, the reader is referred to the web version 

of this article.) 
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to EMD are also proposed. For example, Smith [9] raised local

mean decomposition (LMD) method through separating amplitude-

modulation (AM) and frequency-modulation (FM). Frei and Os-

orio [10] put forward intrinsic time-scale decomposition (ITD)

with low computational complexity. However, these methods suf-

fer problems similar to EMD, including but not limited to mode-

mixing and end-effect. Unlike the above EMD-based decomposition

scheme, some methods retrieve the mode information from proper

time-frequency distributions. For instance, synchrosqueezed trans-

form (SST) [11] utilized a reassignment operator to search the T-F

coefficients of each mode and then reconstruct the modes using

inverse T-F transforms. Nevertheless, SST requires the modes are

well separated in the T-F plane. Empirical wavelet transform (EWT)

[12] combined the wavelet filter bank and adaptive local iterative

filtering method to extract signal modes. However, its performance

relies on the support detection algorithm. 

Recently, Dragomiretskiy and Zosso [13] proposed the varia-

tional mode decomposition (VMD) algorithm that is based on con-

vex optimization theory. They formulated an optimization objec-

tive function with the assumption that the most compact mode

is found around a center frequency ω k . In VMD, the mode band-

width is estimated as H 

1 Gaussian smoothness of the correspond-

ing baseband signal, which is shifted from its analytic signal via

harmonic mixing. VMD’s idea is very innovative and creative and

has attractive performance in several aspects, such as robustness

and anti-mode-mixing [14] . However, the center frequency is es-

timated as the center-of-gravity of the mode’s power spectrum.

Therefore, VMD is not proper to process time-varying signals. In

addition, VMD is still formulated in the frequency domain, thus

it cannot provide time-frequency information. More recently, in-

spired by VMD and sparsification approach [15,16] , Chen et al.

[2] proposed a nonlinear chirp mode decomposition (NCMD) al-

gorithm, which was also a variational method and could analyze

time-varying NCSs. It mainly utilized the demodulation techniques

to transform a time-varying NCS into a narrow-band signal. Specif-

ically, for each mode (nonlinear chirp mode, NCM), two demodu-

lated quadrature signals can be iteratively updated by two time-

frequency filters with the current estimated IF; then based on the

phase information provided by the two quadrature signals, the IF

can be further updated by the arctangent demodulation technique.

The solution of NCMD could be obtained by repeating the above
wo steps until the bandwidth of the demodulated signal is the

arrowest [17] . NCMD is capable of accurately extracting the in-

tantaneous frequencies (IFs) and instantaneous amplitudes (IAs)

f signals with very close or even crossed modes. 

.2. Multivariate signal processing 

With the development of computers and sensors, multivariate

ignal processing techniques are widely demanded and applied in

arious fields [18] , such as disease diagnosis [19,20] and denoising

21] . Generally, multivariate signal decomposition and T-F analysis

nvolve two main requirements [1] : (i) mode-alignment, namely,

he alignment of common or joint oscillations (with similar fre-

uency information) across multiple channels of each mode; (ii)

xtracting any correlation between multiple data channels. There

as been a surge of interest in extending existing univariate meth-

ds to process multivariate (multichannel) signals [1,22] 

The most straightforward methods for multivariate signal pro-

essing is analyzing each channel of a multivariate signal sepa-

ately using univariate signal processing techniques. In this way,

he results would not fulfill the above requirements, because the

utual relationships among channels are not considered. 

In recent years, advances in signal acquisition tools have high-

ighted the demanding for synchronous processing of multichan-

el data [23] . Therefore, it is necessary to develop specialized ex-

ensions for multivariate data that operate directly in multidimen-

ional space where signal resides. The univariate EMD has been

xtended to various versions including those suitable for the bi-

ariate [24] , trivariate [25] , and multivariate [26] signals. The first

wo methods can be considered as subsets of the last one. Multi-

ariate EMD (MEMD) works on the principle of separating faster

ultivariate oscillations from slower ones. It has been applied to

arious fields, such as image fusion [27] , process control [28] , and

iomedical engineering [29] . However, apart from inheriting the

rawbacks of the univariate EMD, such as sensitivity to sampling

nd noise, the performance of MEMD also relies on the selection

f projection number and directions. 

Later, based on similar extension method, Lang et al. proposed

wo kinds of multivariate ITD (MITD) algorithms, namely, indirect

ITD (IMITD) [30] and direct MITD (DMITD) [31] . Nevertheless,

hese MITD methods are also subjected to limitations of univariate

TD. Recently, multivariate SST (MSST) [32] and multivariate EWT

MEWT) [33] have also been reported. They are wavelet-based ap-

roaches. However, MSST only provides a graphical representation

f T-F spectrum and lacks mode separation ability. MEWT is sim-

listic but relies on predefined boundaries of wavelet filterbank,

hich is a tricky problem in practice. VMD-based multivariate sig-

al processing methods, including complex VMD (CVMD) [34] and

ultivariate VMD (MVMD) [1] , are novel and attractive. Actually,

VMD is different from the latter since it cleverly uses the origi-

al VMD to decompose bivariate time series based on properties

f the complex field, thus it cannot be extended to the cases with

ore than two variables. MVMD first defines a multivariate oscil-

ations using analytic signal representation based on Hilbert trans-

orm with a constraint that a joint frequency component exists

mong all signal channels. Then it established a multivariate varia-

ional model as a generic extension of univariate VMD. MVMD not

nly inherits properties of VMD, but also shows mode-alignment

nd quasi-orthogonality. It is the most promising development in

ultivariate signal decomposition. However, because MVMD’s cen-

er frequency is estimated as the center-of-gravity of the mode’s

ower spectrum, it is not proper to process time-varying signals.

n addition, MVMD cannot provide T-F information intuitively. 

As discussed above, most existing methods are limited to pro-

ess narrow-band signals and there is a lack of techniques for

ime-varying multivariate signal decomposition. To tackle this is-
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ue, this paper proposes a multivariate nonlinear chirp mode

ecomposition (MNCMD) algorithm. In the presented variational

odel of MNCMD, we first define a multivariate nonlinear chirp

ode (MNCM) based on the instantaneous frequency information

mong all channels of input data. Derived from the fact that a

ime-varying MNCM can be transformed into a narrow-band multi-

ariate signal through demodulation techniques, an objective func-

ion is then established based on minimizing the sum of band-

idths of the modes across all signal channels. Minimization of

he MNCMD model can be effectively achieved through the alter-

ate direction method of multipliers (ADMM). As a genetic exten-

ion of univariate NCMD model to multivariate signals, the pro-

osed MNCMD inherits a lot of desirable properties of univariate

CMD. And it can extract an optimal set of multivariate modes and

heir corresponding instantaneous frequencies without requiring

ore user-defined parameters than the original NCMD. The effec-

iveness and advantages of MNCMD is demonstrated by extensive

imulated and real-world signals. We specifically focus on inves-

igating its mode-alignment property, filter bank structure, quasi-

rthogonality, influence of channel number, noise robustness, and

onvergence. 

The development of the proposed MNCMD scheme will be de-

ailed in the following sections. Section 2 introduces the univariate

CMD. The proposed MNCMD is described elaborately in Section 3 .

he study on the properties of MNCMD is given in Section 4 , in-

luding mode-alignment, filter bank structure, quasi-orthogonality,

nfluence of channel number, noise robustness, and convergence.

n Section 5 , real-world applications in three fields, including the

nalysis of an oceanographic float position record (two-channel),

he separation of α-rhythms in EEG data (four-channel), and the

etection of plant-wide oscillations in industrial control systems

nine-channel), are provided to validate the effectiveness and ad-

antages of the proposed methodology. These are followed by con-

lusions in Section 6 . 

. Nonlinear chirp mode decomposition 

Nonlinear chirp modes (NCMs) are AM-FM (amplitude-

odulated and frequency-modulated) functions, which can be

iven by 

 ( t ) = a ( t ) cos 

(
2 π

∫ t 

0 

f ( s ) ds + φ

)
(1) 

here a ( t ), f ( t ) > 0 are the instantaneous amplitude (IA) and the

nstantaneous frequency (IF), respectively. φ stands for the initial

hase. Generally, IA and IF are assumed to be smooth functions.

ote that, for notational simplicity, the subscript i is omitted in

1) . In practice, the nonstationary signal x ( t ), called as NCS, usually

oes not satisfy the conditions of Hilbert transform [13] . That is to

ay, it is infeasible to conduct time-frequency analysis of x ( t ) di-

ectly. To tackle this issue, NCMD assumes a NCS is composed of Q

CMs [2] , which meet the above conditions. Thus the nonstation-

ry signal x ( t ) can be expressed as the sum of multiple NCMs, as

hown in (2) . 

 ( t ) = 

Q ∑ 

i =1 

g i ( t ) + η( t ) 

= 

Q ∑ 

i =1 

a i ( t ) cos 

(
2 π

∫ t 

0 

f i ( s ) ds + φi 

)
+ η( t ) (2) 

here η( t ) ∼ N 

(
0 , σ 2 

)
is the white Gaussian noise. When x ( t ) is

ecomposed into a set of NCMs g ( t ), the corresponding analytic
i 
ignals g i,A ( t ) are generated by Hilbert transform 

 i,A ( t ) = g i ( t ) + H ( g i ( t ) ) 

= a i ( t ) exp 

(
2 π

∫ t 

0 

f i ( s ) ds + φi 

)
(3) 

here H ( ·) stands for the Hilbert transform. Then the IFs can be

btained by phase demodulation [2,13] . 

The NCS model (2) can be rewritten into a demodulated form

s 

 ( t ) = 

Q ∑ 

i =1 

a i ( t ) cos 

(
2 π

∫ t 

0 

(
f i ( s ) − ˜ f i ( s ) 

)
ds + φi 

)
︸ ︷︷ ︸ 

u i ( t ) 

× cos 

(
2 π

∫ t 

0 

˜ f i ( s ) ds 

)

−a i ( t ) sin 

(
2 π

∫ t 

0 

(
f i ( s ) − ˜ f ( s ) 

)
ds + φi 

)
︸ ︷︷ ︸ 

v i ( t ) 

× sin 

(
2 π

∫ t 

0 

˜ f i ( s ) ds 

)
+ η( t ) 

= 

Q ∑ 

i =1 

u i ( t ) cos 

(
2 π

∫ t 

0 

˜ f i ( s ) ds 

)
+ v i ( t ) 

× sin 

(
2 π

∫ t 

0 

˜ f i ( s ) ds 

)
+ η( t ) (4) 

here u i ( t ) and v i ( t ) represent two demodulated signals; IA could

e reconstructed as a i = 

√ 

( u i ( t ) ) 
2 + ( v i ( t ) ) 2 ; ˜ f i ( s ) stands for the

requency function of demodulation operator. According to the ba-

ic idea of the NCMD that the demodulated signals u i ( t ) and v i ( t )

ill have the narrowest frequency band when f i ( s ) = 

˜ f i ( s ) , the de-

omposition problem can be formulated as 

min 

{ u i (t) } , { v i (t) } , { ̃ f i (t) } 

{ 

Q ∑ 

i =1 

∥∥u i 
′′ (t) 
∥∥2 

2 
+ 

∥∥v i ′′ (t) 
∥∥2 

2 

} 

s.t . 

∥∥∥∥∥x (t ) −
Q ∑ 

i =1 

u i (t) cos 

(
2 π

∫ t 

0 

˜ f i (s ) ds 

)

+ v i (t) sin 

(
2 π

∫ t 

0 

˜ f i (s ) ds 

)∥∥∥∥
2 

≤ ε (5) 

here the square of the l 2 norm of the second-order derivative

s used to estimate the signal bandwidth [35] ; ε > 0 is an up-

er bound determined by the noise level. Then, the augmented

agrangian multiplier and ADMM (alternate direction method of

ultipliers) are adopted to solve (5) . The details of the optimiza-

ion procedures are available in [2] . 

. Multivariate nonlinear chirp mode decomposition 

.1. Multivariate nonlinear chirp mode 

In order to develop a multivariate version of NCMD, we need to

efine an multivariate nonlinear chirp mode (MNCM). Firstly, a set

f multivariate AM-FM signals with M channels can be represented

n a vector form [36] 

 ( t ) = 

⎡ 

⎢ ⎢ ⎣ 

g 1 ( t ) 
g 2 ( t ) 

. . . 
g M 

( t ) 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

a 1 ( t ) cos 
(
2 π
∫ t 

0 f 1 ( s ) ds + φ1 

)
a 2 ( t ) cos 

(
2 π
∫ t 

0 f 2 ( s ) ds + φ2 

)
. . . 

a M 

( t ) cos 
(
2 π
∫ t 

0 f M 

( s ) ds + φM 

)

⎤ 

⎥ ⎥ ⎥ ⎦ 

(6) 
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where a m 

( t ), f m 

, and φm 

denote the IA, IF and initial phase for

the m -th component respectively. Then, the corresponding analytic

representation of the vector signal g ( t ) is given by 

g A ( t ) = g ( t ) + jH ( g ( t ) ) 

= 

⎡ 

⎢ ⎢ ⎣ 

g 1 A ( t ) 
g 2 A ( t ) 

. . . 

g M 

A ( t ) 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎢ ⎣ 

a 1 ( t ) exp 

(
j 
(
2 π
∫ t 

0 f 1 ( s ) ds + φ1 

))
a 2 ( t ) exp 

(
j 
(
2 π
∫ t 

0 f 2 ( s ) ds + φ2 

))
. . . 

a M 

( t ) exp 

(
j 
(
2 π
∫ t 

0 f M 

( s ) ds + φM 

))

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 
(7)

where H represents the Hilbert transform. It is notable that the

mathematical description of (7) regards the M channel in isola-

tion from each other. For a multivariate nonlinear chirp mode,

there may be one or more common frequency components con-

tain in g ( t ). Herein, we adopt a simplified multivariate analytic sig-

nal expression for g A ( t ) that requires a single common component

among all channels [2,36] , namely, 

g A ( t ) = 

⎡ 

⎢ ⎢ ⎣ 

a 1 ( t ) 
a 2 ( t ) 

. . . 
a M 

( t ) 

⎤ 

⎥ ⎥ ⎦ 

exp 

(
j 

(
2 π

∫ t 

0 

f ( s ) ds + φ

))

= a ( t ) exp 

(
j 

(
2 π

∫ t 

0 

f ( s ) ds + φ

))
. (8)

Model (8) is the analytic form of MNCM and will be used to

formulate the objective function of MNCMD algorithm in the fol-

lowing section. 

3.2. Objective function 

Because the demodulation only involves the phase part of a

time-varying NCM, we can use the technology similar to the uni-

variate NCM demodulation to demodulate the multivariate NCM.

Herein, a demodulation operator (DO) 	− [2,37] is given by 

	−( t ) = exp 

(
− j 2 π

(∫ t 

0 

f d ( s ) d s − f c t 

))
(9)

where f d typifies the frequency function of the operator; f c is car-

rier frequency. The corresponding demodulated MNCM g d 
A ( t ) is cal-

culated by multiplying g A ( t ) with the demodulation operator 	−: 

g d A ( t ) = g A ( t ) 	
−( t ) 

= a ( t ) exp 

(
j 2 π

∫ t 

0 

f ( s ) − f d ( s ) d s + j φ + j 2 π f c t 

)
. (10)

When the frequency function of DO f d is matched to that of MNCM

(i.e., f ( s ) = f d ( s ) ), g d 
A ( t ) would be a purely AM signal centered

around the carrier frequency f c . That is to say, the demodulated

MNCM will have the narrowest band, which is consistent with the

conclusions in univariate case [38,39] . 

It can be observed from Fig. 2 that the demodulated signal in-

deed has a more compact spectrum. 

After demodulation, in order to measure the bandwidth of a

AM signal, it is necessary to move the mode’s spectrum to ”base-

band” by mixing demodulated signal with a frequency-shift op-

erator exp ( − j2 π f c t ) , namely, the multivariate baseband signal is

given by 

g b A ( t ) = g d A ( t ) exp ( − j2 π f c t ) . (11)

The spectrum of the baseband signal is shown in the right graph of

Fig. 2 . It is apparent that the baseband mode is a zero intermediate

frequency signal and the frequency-shift operator does not change

the bandwidth of g d 
A ( t ) . It is worth noting that the operations of

(10) and (11) can be combined as 

g b A ( t ) = g A ( t ) exp 

(
− j 2 π

∫ t 

0 

f ( s ) d s 

)
(12)
here f ( t ) is the IF of the original MNCM. Therefore, our approach

s estimating the IF of a MNCM by searching a smooth function
˜ f ( s ) with which the resulting baseband signal has the narrowest

and. It should be noted that MVMD only involves the frequency-

hift operation without demodulation, which means MVMD cannot

xtract the IF information and process time-varying signals. 

In the end, the MNCM can be recovered using trigonometric

dentity, given by 

 ( t ) = Re { g A ( t ) } 
= Re 

{
g b A ( t ) exp 

(
j 2 π

∫ t 

0 

˜ f ( s ) d s 

)}

= Re 
{

g b A ( t ) 
}

· Re 

{
exp 

(
j 2 π

∫ t 

0 

˜ f ( s ) d s 

)}

− Im 

{
g b A ( t ) 

}
· Im 

{
exp 

(
j 2 π

∫ t 

0 

˜ f ( s ) d s 

)}

= u ( t ) cos 

(
2 π

∫ t 

0 

˜ f ( s ) ds 

)
+ v ( t ) sin 

(
2 π

∫ t 

0 

˜ f ( s ) ds 

)
(13)

here u ( t ) and v ( t ) are two demodulated signals expressed as 

 ( t ) = a ( t ) cos 

(
2 π

∫ t 

0 

(
f ( s ) − ˜ f ( s ) 

)
ds + jφ

)
(14)

 ( t ) = −a ( t ) sin 

(
2 π

∫ t 

0 

(
f ( s ) − ˜ f ( s ) 

)
ds + jφ

)
. (15)

Assuming the mode number and channel number are Q

nd M , respectively, then the multivariate input data X =
 x 1 x 2 . . . x M 

] T can be written as 

 ( t ) = 

Q ∑ 

i =1 

g i ( t ) = 

Q ∑ 

i =1 

u i ( t ) cos 

(
2 π

∫ t 

0 

˜ f i ( s ) ds 

)

+ v i ( t ) sin 

(
2 π

∫ t 

0 

˜ f i ( s ) ds 

)
+ η( t ) 

= 

Q ∑ 

i =1 

⎡ 

⎢ ⎢ ⎣ 

u i, 1 ( t ) 
u i, 2 ( t ) 

. . . 
u i,M 

( t ) 

⎤ 

⎥ ⎥ ⎦ 

cos 

(
2 π

∫ t 

0 

˜ f i ( s ) ds 

)

+ 

⎡ 

⎢ ⎢ ⎣ 

v i, 1 ( t ) 
v i, 2 ( t ) 

. . . 
v i,M 

( t ) 

⎤ 

⎥ ⎥ ⎦ 

sin 

(
2 π

∫ t 

0 

˜ f i ( s ) ds 

)
+ η( t ) . (16)

The goal of MNCMD is to extract an ensemble of multivari-

te nonlinear chirp modes from the multivariate input data such

hat the sum of bandwidth of the extracted modes is minimum.

o this end, the resulting objective function of the MNCMD then

ecomes a multivariate extension of that used in the univariate

CMD (5) and is formulated as 

min { u m i ( t ) } , { v m i ( t ) } , { ̃ f i ( t ) } 
Q ∑ 

i =1 

M ∑ 

m =1 

{ ∥∥u 

′′ 
i,m 

( t ) 
∥∥2 

2 
+ 

∥∥v ′′ i,m 

( t ) 
∥∥2 

2 

} 

s.t . 

∥∥∥∥∥x m 

( t ) −
Q ∑ 

i =1 

u i,m 

( t ) cos 

(
2 π

∫ t 

0 

˜ f i ( s ) ds 

)

+ v i,m 

( t ) sin 

(
2 π

∫ t 

0 

˜ f ( s ) ds 

)∥∥∥∥
2 

≤ ε m 

, m = 1 , 2 , . . . , M. (17)

To avoid confusion, the subscript i and m represent mode index

nd channel index, respectively. 
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Fig. 2. (a) spectrum of a time-varying signal; (b) spectrum of the corresponding demodulated signal; and (c) spectrum of the corresponding baseband signal. 
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.3. Algorithm 

Because signals are discrete points in practice, model (17) is dis-

retized in this section. Assuming that the signals are sampled at

 = t 0 , . . . , t N−1 , the discrete form of (17) is 

min 

{ u i,m } , { v i,m } , { f i } 

{ 

Q ∑ 

i =1 

M ∑ 

m =1 

(‖ 


u i,m 

‖ 

2 
2 + ‖ 


v i,m 

‖ 

2 
2 

)} 

s.t. 

∥∥∥∥∥x m 

−
Q ∑ 

i =1 

( A i u i,m 

+ B i v i,m 

) 

∥∥∥∥∥
2 

≤ ε m 

, m = 1 , 2 , . . . , M (18) 

here u i,m 

= [ u i,m 

( t 0 ) , . . . , u i,m 

( t N−1 ) ] 
T , v i,m 

= 

 v i,m 

( t 0 ) , . . . , v i,m 

( t N−1 ) ] 
T , f i = [ ̃  f i ( t 0 ) , . . . , ˜ f i ( t N−1 ) ] 

T , 

 m 

= [ x m 

( t 0 ) , . . . , x m 

( t N−1 ) ] 
T , ϕ i (t) = 2 π

∫ t 
0 

˜ f i (s ) ds , 

 i = diag[ cos ( ϕ i ( t 0 ) ) , . . . cos ( ϕ i ( t N−1 ) ) ] , B i = 

iag[ sin ( ϕ i ( t 0 ) ) , . . . sin ( ϕ i ( t N−1 ) ) ] , and 
 is a second-order differ-

nce operator [2] given as 

= 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎣ 

−1 1 0 · · · 0 

1 −2 1 · · · 0 

. . . 
. . . 

. . . 
. . . 

. . . 
0 · · · 1 −2 1 

0 · · · 0 1 −1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎦ 

. (19) 

By introducing the auxiliary variable ω m 

∈ R 

N×1 , the multiple

nequality constraints in (18) are transformed into multiple equal-

ty constraints, i.e., 

min 

{ u i,m } , { v i,m } , { f i } , ω m 

{ 

M ∑ 

m =1 

I C ε ( ω m 

) + 

Q ∑ 

i =1 

M ∑ 

m =1 

(‖ 


u i,m 

‖ 

2 
2 + ‖ 


v i,m 

‖ 

2 
2 

)}

s.t. ω m 

= x m 

−
Q ∑ 

i =1 

( A i u i,m 

+ B i v i,m 

) , m = 1 , 2 , . . . , M (20)

here I C ε ( ·) is an indicator function 

 C ε ( ω ) 
�= 

{
0 , ω ∈ C ε 
+ ∞ ω / ∈ C ε 

(21) 

here C ε is an Euclidean ball with the center of zero and radius

f ε, i.e. C ε m 
�= 

{
c ∈ R 

N×1 : ‖ c ‖ 2 ≤ ε m 

}
. It is notable that, as op-

osed to many methods, such as MEMD and MVMD, the influ-

nce of noise is taken into account by including the auxiliary (or

oise) variable ω m 

∈ R 

N×1 . As a result, the proposed approach will

utperform MVMD in noisy environment. The corresponding aug-

ented Lagrangian function of (20) then becomes 

L α
({ u i,m 

} , { v i,m 

} , { f i } , ω m 

, λm 

)
= 

M ∑ 

m =1 

I C ε m ( ω m 

) 
+ 

Q ∑ 

i =1 

M ∑ 

m =1 

(‖ 


u i,m 

‖ 

2 
2 + ‖ 


v i,m 

‖ 

2 
2 

)
+ 

M ∑ 

m =1 

λT 
m 

( 

ω m 

+ 

Q ∑ 

i =1 

( A i u i,m 

+ B i v i,m 

) − x m 

) 

+ 

M ∑ 

m =1 

α

2 

∥∥∥∥∥ω m 

+ 

Q ∑ 

i =1 

( A i u i,m 

+ B i v i,m 

) − x m 

∥∥∥∥∥
2 

2 

(22) 

here λm 

∈ R 

N×1 is the Lagrangian multiplier and α is a quadratic

enalty parameter. According to Appendix A , (22) is equivalent to 

L α
({ u i,m 

} , { v i,m 

} , { f i } , ω m 

, λm 

)
= 

M ∑ 

m =1 

I C ε m ( ω m 

) 

+ 

Q ∑ 

i =1 

M ∑ 

m =1 

(‖ 


u i,m 

‖ 

2 
2 + ‖ 


v i,m 

‖ 

2 
2 

)

+ 

M ∑ 

m =1 

⎛ 

⎝ 

α

2 

∥∥∥∥∥ω m 

+ 

Q ∑ 

i =1 

( A i u i,m 

+ B i v i,m 

) − x m 

+ 

1 

α
λm 

∥∥∥∥∥
2 

2 

− 1 

2 α
‖ 

λm 

‖ 

2 
2 

) 

. (23) 

hen, the solution of the original minimization problem (18) is

ound as the saddle point of the augmented Lagrangian (23) in a

equence of iterative sub-optimizations termed alternate direction

ethod of multipliers (ADMM) [40] . This optimization problem can

e divided into three sub-problems [2] , i.e., the update of auxiliary

ariable ( ω), demodulated signals ( u , v ), instantaneous frequencies

 . The adopted method is a variant ADMM rather than the stan-

ard version. We will detail how the respective sub-problems can

e solved in the following. For notational simplicity, the iteration

ounters (i.e., superscripts like · k ) are omitted, and each is im-

licitly understood as the most recent available update. 

.3.1. Update w.r.t. auxiliary variable 

The update of the auxiliary ω m 

variable can be obtained by

olving the following sub-problem 

 

k +1 
m 

= arg min 

ω m 

{
L α
({ u i,m 

} , { v i,m 

} , { f i } , ω m 

, λm 

)}
= arg min 

ω m 

{ 

I C ε m ( ω m 

) + 

α

2 

∥∥∥∥∥ω m 

+ 

Q ∑ 

i =1 

( A i u i,m 

+ B i v i,m 

) 

− x m 

+ 

1 

α
λm 

∥∥∥2 

2 

}
. (24) 
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Fig. 3. Decomposition of a bivariate signal consisting of a mixture of tones via uni- 

variate NCMD. Note that mode 2 decomposition is misaligned. 
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The corresponding solution of (24) is given by 

ω 

k +1 
m 

= P C ε m 

( 

x m 

−
Q ∑ 

i =1 

( A i u i,m 

+ B i v i,m 

) − 1 

α
λm 

) 

(25)

where P C ε m ( ·) is a proximity operator [41] , defined as 

pro x C ε m /α( z ) = P C ε m ( z ) 
�= 

{
ε m ‖ z ‖ 2 · z, ‖ 

z ‖ 2 > ε m 

z, ‖ 

z ‖ 2 ≤ ε m 

. (26)

3.3.2. Update w.r.t. demodulated signals 

Following, the demodulated quadrature signals u i,m 

and v i,m 

can

be updated as 

u 

k +1 
i,m 

= arg min 

u i,m 

{
L α
({

u j,m 

}
, 
{
v j,m 

}
, 
{

f j 
}
, ω m 

, λm 

)}
Fig. 4. Decomposition of a bivariate signal consisting of a mixture of tones via (a) MNCM

from end-effect. 
= arg min 

u i,m 

{ 

‖ 


u i,m 

‖ 

2 
2 + 

α

2 

∥∥∥∥∥ω m 

+ 

Q ∑ 

j=1 

(
A j u j,m 

+ B j v j,m 

)
− x m 

+ 

1 

α
λm 

∥∥∥2 

2 

}
. (27)

 

k +1 
i,m 

= arg min 

v i,m 

{
L α
({

u j,m 

}
, 
{
v j,m 

}
, 
{

f j 
}
, ω m 

, λm 

)}
= arg min 

v i,m 

{ 

‖ 


v i,m 

‖ 

2 
2 + 

α

2 

∥∥∥∥∥ω m 

+ 

Q ∑ 

j=1 

(
A j u j,m 

+ B j v j,m 

)
− x m 

+ 

1 

α
λm 

∥∥∥2 

2 

}
. (28)

(27) and (28) can be easily solved by setting their gradients to

ero, yielding 

 

k +1 
i,m 

= 

(
2 
T 


α
+ A T i A i 

)−1 

︸ ︷︷ ︸ 
H c i,m 

A T i 

(
x m −

∑ Q 

j 	 = i A j u j,m −
∑ Q 

j=1 
B j v j,m − ω m − 1 

α
λm 

)
︸ ︷︷ ︸ 

r c i,m 

(29)

 

k +1 
i,m 

= 

(
2 
T 


α
+ B T i B i 

)−1 

︸ ︷︷ ︸ 
H s i,m 

B T i 

(
x m −

∑ Q 

j=1 
A j u j,m −

∑ Q 

j 	 = i B j v j,m − ω m − 1 

α
λm 

)
︸ ︷︷ ︸ 

r s i,m 

(30)

here H c i,m and H s i,m act as two time-frequency filters, which are

imilar to those in NCMD. 

.3.3. Update w.r.t. instantaneous frequency 

Now, we turn our attention to the optimization problem corre-

ponding to instantaneous frequency update. It is observed that the

nstantaneous frequencies are not explicitly represented in the cor-

esponding augmented Lagrangian function (22) ; while other vari-

bles are explicitly represented. Therefore, we cannot get the up-

ate formula about instantaneous frequencies as the way we treat

ther variables. It is necessary to seek another way to tackle this

roblem. Notice that the two demodulated signals u ( t ) (14) and
D and (b) MVMD. Both methods show mode-alignment property but MVMD suffers 
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Fig. 5. Decomposition of a bivariate signal with phase shifts via (a) MNCMD and (b) MVMD. Both methods show mode-alignment property but MVMD is subjected to 

end-effect issue (marked with ellipses). 

Fig. 6. Decomposition of a bivariate signal with frequency varying linearly via (a) MNCMD and (b) MVMD. Note that MNCMD shows satisfied mode-alignment property and 

extracts all modes correctly while MVMD fails to process such signals. 
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 ( t ) (15) could provide the increment information for the IFs [2] .

aving updated u i,m 

and v i,m 

, the increment information for the

Fs can be obtained by arctangent demodulation approach [42] , as

hown in (31) . 

˜ f k +1 
i,m 

( t ) = − 1 

2 π

d 

dt 

( 

arctan 

( 

v k +1 
i,m 

( t ) 

u 

k +1 
i,m 

( t ) 

) ) 

= 

v k +1 
i,m 

( t ) ·
(
u 

k +1 
i,m 

( t ) 
)′ − u 

k +1 
i,m 

( t ) ·
(
v k +1 

i,m 

( t ) 
)′ 

2 π
((

u 

k +1 
i,m 

( t ) 
)2 + 

(
v k +1 

i,m 

( t ) 
)2 
) . (31) 
�

ote that in this step we only obtain the increment of IF rather

han the IF itself. Then the IF can be calculated as 

f k +1 
i,m 

= f k i,m 

+ γ · � ˜ f k +1 
i,m 

. (32)

here γ is a proportionality factor. 

However, due to the limitations of arctangent demodulation and

oise, the current increment of instantaneous frequency � ˜ f k +1 
i,m 

is

ot smooth enough, which would result in the unsmooth instan-

aneous frequency. This is not consistent with the requirement in

onlinear chirp mode that the instantaneous frequency should be

mooth enough. In order to remedy this issue, the increment of

nstantaneous frequency � ˜ f k +1 
i,m 

is filtered by a low-pass filter. The

orresponding filter can be obtained by solving the problem 

min 

f k +1 
i,m 

{ ∥∥
� f k +1 
i,m 

∥∥2 

2 
+ 

μ

2 

∥∥� f k +1 
i,m 

− � ˜ f k +1 
i,m 

∥∥2 

2 

} 
(33) 
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Algorithm 1 Multivariate nonlinear chirp mode decomposition. 

1: Initialize: x m 

, α, μ, f i , A i = d iag 
[
cos 
(
2 π
∫ 

f 1 
i ( t ) d t 

)]
, B i = 

d iag 
[
sin 

(
2 π
∫ 

f 1 
i ( t ) d t 

)]
, u 

1 
i,m 

= 

(
2 
α 
T 
 + 

(
A 

1 
i 

)T 
A 

1 
i 

)−1 (
A 

1 
i 

)T 
x m 

, 

v 1 
i,m 

= 

(
2 
α 
T 
 + 

(
B 

1 
i 

)T 
B 

1 
i 

)−1 (
B 

1 
i 

)T 
x m 

, λ1 
m 

= 0 , for i = 1 , . . . , Q , 

m = 1 , . . . , M; k = 0 

2: while 
Q ∑ 

i =1 

M ∑ 

m =1 

∥∥∥g k +1 
i,m 

−g k 
i,m 

∥∥∥2 

2 ∥∥∥g k 
i,m 

∥∥∥2 

2 

> δ do 

3: k = k + 1 

4: for m = 1 : M do 

5: ω 

k +1 
m 

= P C ε m 

(
x m 

−
Q ∑ 

i =1 

(
A i u i,m 

+ B i v i,m 

)
− 1 

α λm 

)
6: end for 

7: for i = 1 : Q do 

8: A 

k +1 
i 

= d iag 
[
cos 
(
2 π
∫ 

f k +1 
i ( t ) d t 

)]
9: B 

k +1 
i 

= d iag 
[
sin 

(
2 π
∫ 

f k +1 
i ( t ) d t 

)]
10: for m = 1 : M do 

11: u 

k +1 
i,m 

= arg min 

u i,m 

{
L α
({

u j,m 

}
, 
{
v j,m 

}
, 
{

f j 
}
, ω m 

, λm 

)}
12: v k +1 

i,m 

= arg min 

v i,m 

{
L α
({

u j,m 

}
, 
{
v j,m 

}
, 
{

f j 
}
, ω m 

, λm 

)}
13: a 

k +1 
i,m 

= 

√ (
u 

k +1 
i,m 

)2 + 

(
v k +1 

i,m 

)2 

14: � ˜ f k +1 
i,m 

( t ) = 

v k +1 
i,m 

( t ) ·
(

u k +1 
i,m 

( t ) 

)′ 
−u k +1 

i,m 
( t ) ·
(

v k +1 
i,m 

( t ) 

)′ 
2 π

((
u k +1 

i,m 
( t ) 

)2 
+ 
(

v k +1 
i,m 

( t ) 

)2 
)

15: f k +1 
i,m 

= f k 
i,m 

+ γ ·
(

2 
μ
T 
 + I 

)−1 
� ˜ f k +1 

i,m 

16: end for 

17: f k +1 
i ( t n ) = 

M ∑ 

m =1 

f k +1 
i,m 

( t n ) 

∣∣∣a k +1 
i,m 

( t n ) 

∣∣∣2 
M ∑ 

m =1 

∣∣∣a k +1 
i,m 

( t n ) 

∣∣∣2 
18: for m = 1 : M do 

19: g k +1 
i,m 

= A i u 

k +1 
i,m 

+ B i v 
k +1 
i,m 

20: end for 

21: end for 

22: for m = 1 : M do 

23: λk +1 
m 

= λk 
m 

+ α

(
ω m 

+ 

Q ∑ 

i =1 

g k +1 
i,m 

− x m 

)
24: end for 

25: end while 

4

 

t  

i  

l  

o  

c  

o  

s  

M

4

 

c  

t  

m  

a  

f  

s

where μ is a penalty parameter; � ˜ f k +1 
i,m 

=[
� ˜ f k +1 

i,m 

( t 0 ) , . . . , � ˜ f k +1 
i,m 

( t N−1 ) 
]T 

represents the results of (31) and

� f k +1 
i,m 

is the desired one, given by 

� f k +1 
i,m 

= 

(
2 

μ

T 
 + I 

)−1 

� ˜ f k +1 
i,m 

(34)

where I stands for an identity matrix. In fact, (33) is formulated on

the assumption that the increment of IF in each iteration is still a

band-limited function [2] . Based on the filtered increment � f k +1 
i,m 

,

the update formula of instantaneous frequency is modified from

(32) to (35) 

f k +1 
i,m 

= f k i,m 

+ γ · � f k +1 
i,m 

(35)

where γ = 0 . 5 is a proportionality factor adopted to stabilize the

algorithm [2] . 

To summarize, the update of instantaneous frequency is 

f k +1 
i,m 

= f k i,m 

+ γ · � f k +1 
i,m 

= f k i,m 

+ γ ·
(

2 

μ

T 
 + I 

)−1 

︸ ︷︷ ︸ 
f ilter 

� ˜ f k +1 
i,m 

= f k i,m 

+ γ ·
(

2 

μ

T 
 + I 

)−1 

︸ ︷︷ ︸ 
f ilter 

×
( 

− 1 

2 π

d 

dt 

( 

arctan 

( 

v k +1 
i,m 

( t ) 

u 

k +1 
i,m 

( t ) 

) ) ) 

(36)

where the filter acts low-pass property to ensure smoothness. 

Note that, (35) is the instantaneous frequency of mode i

and channel m . However, the multivariate signal decomposition

method requires all channels present a joint or common frequency,

which is a problem that must be solved for MNCMD. MVMD solves

this problem in frequency domain [1] . More specifically, it updates

the center frequency by taking the contributions from power spec-

trum of all channels into account, namely, the center frequency of

each channel is weighted and averaged according to its signal spec-

trum. For the proposed MNCMD, updating formulas in the form of

frequency domain is not available. Inspired by Parseval theorem,

the above operations in the frequency domain can be performed

in the time domain equivalently. In this work, the common fre-

quency information is obtained by the power-weighted average of

the instantaneous frequency of each channel. The weighting factor

is the instantaneous energy of each channel, which is equivalent

to the energy of spectrum in frequency domain. As a result, the

instantaneous frequency is given below 

f k +1 
i ( t n ) = 

∑ M 

m =1 f 
k +1 
i,m 

( t n ) 
∣∣a 

k +1 
i,m 

( t n ) 
∣∣2 ∑ M 

m =1 

∣∣a 

k +1 
i,m 

( t n ) 
∣∣2 (37)

where a 

k +1 
i,m 

= 

√ (
u 

k +1 
i,m 

)2 + 

(
v k +1 

i,m 

)2 
is the instantaneous amplitude.

More discussion on (37) is provided in Appendix B . 

The last step of MNCMD is to update the Lagrangian multiplier

as 

λk +1 
m 

= λk 
m 

+ α

( 

ω m 

+ 

Q ∑ 

i =1 

g k +1 
i,m 

− x m 

) 

. (38)

The above steps are summarized in Algorithm 1 . It is worth

noting that the proposed multivariate NCMD does not introduce

more user-defined parameters than univariate NCMD. Penalty pa-

rameters (i.e. α and μ) play the same role for MNCMD and NCMD.

Therefore, one could use the same parameters in MNCMD as that

adopted in NCMD. The properties and advantages of univariate

NCMD have been explored in detail in [2] . 
. Properties and comparisons 

In order to demonstrate the effectiveness and advantages of

he proposed MNCMD, this section reports simulations and exper-

ments on a wide range of multivariate data. Specifically, we high-

ight the mode-alignment property, filter bank structure, quasi-

rthogonality, influence of channel number, noise robustness, and

onvergence. Because MVMD has shown better performance than

ther methods [1] , and it is the latest and promising multivariate

ignal decomposition algorithm, MNCMD is mainly compared with

VMD. 

.1. Mode-alignment 

In this section, we focus on the ability of MNCMD to align

ommon frequency scales across multiple signal channels, which is

ermed as mode-alignment. Mode-alignment is an critical require-

ent in many engineering and scientific applications including im-

ge fusion [43] , denoising [44] , disease diagnosis [29] , to name a

ew. Detailed discussion on the importance of mode-alignment in

ignal processing applications are provided in [45] . 
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Fig. 7. Decomposition of a bivariate signal with frequency varying nonlinearly via (a) MNCMD and (b) MVMD. Note that MNCMD shows satisfied mode-alignment property 

and extracts all modes correctly while MVMD fails to process such signals. 

Fig. 8. Decomposition of a bivariate signal with both amplitude and frequency varying via (a) MNCMD and (b) MVMD. Note that MNCMD shows satisfied mode-alignment 

property while MVMD fails to process such signals. 
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.1.1. Case 1: Time-invariant signal 

Herein, we consider a signal (39) consisting of two channels.

he individual components are a mixture of 36-Hz sinusoid that

as common to both data channels; a 2-Hz tone in x 1 ( t ) (channel

), and a 24-Hz tone in the x 2 ( t ) (channel-2). 

x 1 ( t ) = cos ( 2 π2 t ) + 2 cos (2 π36 t) 
x 2 ( t ) = cos ( 2 π24 t ) + 2 cos ( 2 π36 t ) 

(39) 

In Fig. 3 , signal (39) is decomposed by applying univariate

CMD to each channel separately. Note that the frequency content

cross channels in mode g 2 is not aligned, i.e., 2-Hz in channel-

 and 24-Hz in channel-2. In addition, there are a lot of ener-

ies leaking to mode g 1 , whose curves should be lines ideally.

he decomposition results of MNCMD and MVMD are displayed in

ig. 4 (a) and (b), respectively. It is observed that all modes are
ligned in terms of their frequency contents: the 36-Hz tone pre-

ented in all data channels is localized in the third mode. The 2-

z component is located in the first mode of channel-1 while the

4-Hz signal is localized in the second mode of channel-2. There-

ore, like MVMD, the proposed MNCMD also has attractive mode-

lignment property. Note that, comparing the endpoints of mode

 2,1 , g 1,2 , u 2,1 , and u 1,2 in Fig. 4 (a) and (b), these modes ( g 2,1 and

 1,2 ) obtained by MNCMD are almost a straight line while there

re fluctuations in u 2,1 and u 1,2 . This means MVMD suffers from

nd-effect, which is a common issue in signal decomposition. Ac-

ordingly, both MNCMD and MVMD can align the similar frequency

ontent in a single mode across all signal channels, and MNCMD is

ess prone to end-effect. 

In order to demonstrate the presented MNCMD is able to pro-

ess signals with phase shifts. (40) is generated by embedding the
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Fig. 9. The estimated IFs by MNCMD for multivariate signals in (a) case 1, (b) case 2, (c) case 3, and (d) case 4. (Blue: true; Red: estimated. For interpretation of the 

references to colors in this figure, the reader is referred to the web version of this article.) The proposed MNCMD could accurately capture IFs in various cases. 
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phase shifts across various channels in (39) . {
x 1 ( t ) = cos ( 2 π2 t + π/ 2 ) + 2 cos (2 π36 t + π/ 3 ) 
x 2 ( t ) = cos ( 2 π24 t ) + 2 cos ( 2 π36 t ) 

(40)

The decomposition results of MNCMD and MVMD are displayed

in Fig. 5 (a) and (b), respectively. It is observed that MVMD suffers

from apparent end-effect issue (marked with ellipses); while the

MNCMD manifests satisfactory performance. Therefore, the pre-

sented MNCMD is not affected by phase shifts. 

4.1.2. Case 2: Signal with frequency varying linearly 

In this case, MNCMD is applied to a multivariate signal with

time-varying frequency, given by {
x 1 ( t ) = cos ( 2 π2 t ) + 2 cos (2 π36 t) + cos 

(
2 π24 t 2 

)
+ η

x 2 ( t ) = 2 cos ( 2 π36 t ) + cos 
(
2 π24 t 2 

)
+ η

, η ∈ N ( 0 , 0 . 1 ) . (41)

Both channels of signal (41) contain a common time-varying in-

stantaneous frequency 48 t . Fig. 6 (a) and (b) exhibit the decom-
osition outputs of MNCMD and MVMD, respectively. It can be

bserved that all modes, including frequency-varying modes, are

ligned among all channels in MNCMD; while MVMD not only fails

o process the frequency-varying components, but also cannot ex-

ract the tones with constant frequency. Therefore, MNCMD out-

erforms MVMD in decomposing frequency-varying signals and it

till can keep the modes aligned in such case. 

.1.3. Case 3: Signal with frequency varying nonlinearly 

Then, a more complex multivariate signal (42) with frequency

onlinearly varying is studied. 

 

x 1 ( t ) = 1 . 5 cos ( 2 π2 t ) + 2 cos ( 2 π36 t ) + cos 
(
2 π24 t 3 

)
η

x 2 ( t ) = 2 cos ( 2 π36 t ) + cos 
(
2 π24 t 3 

)
+ η

, η ∈ N ( 0 , 0 . 1 ) . 

(42)

t is apparent that there is a nonlinear varying frequency

2 π24 t 3 
)′ 

/ 2 π = 72 t 2 in (42) . The corresponding decomposition



Q. Chen, L. Xie and H. Su / Signal Processing 176 (2020) 107667 11 

Fig. 10. Filter bank structure of (a) MEMD, (b) MVMD, (c) MNCMD for four-channel wGn. Both MVMD and MNCMD follow a different filter bank structure as compared to 

the quasi-dyadic filter bank of MEMD. The mode-alignment across channels is clear in all three cases. 

Fig. 11. Illustration of quasi-orthogonality of decomposed modes obtained from (a) MEMD, (b) MVMD, and (c) MNCMD for a four-channel wGn. The correlation coefficient 

matrices are transformed into a set of gray-scale images, in which black and white represent 1 and 0 respectively. Note that, in MNCMD, the gray parts are minimum and 

the color is the lightest, which indicates the best quasi-orthogonality. 

Fig. 12. MNCMD decomposition of wGn for increasing signal channels. (First row) Illustration of the mode-alignment property, filter bank structure of MNCMD for increasing 

signal channels, i.e., M = 2 , 4 , 8 , and 16 from left to right respectively. (Second row) Illustration of quasi-orthogonality of MNCMD for increasing signal channels i.e., M = 

2 , 4 , 8 , and 16 from left to right respectively. Note that different channel number does not affect the performance of MNCMD in terms of mode-alignment, filter bank 

property and quasi-orthogonality. 
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Fig. 13. Decomposition of a bivariate signal consisting of a mixture of tones and noise in both channels via (a) MNCMD and (b) MVMD. The noise variance is 1. (Red: real 

mode; Blue: estimated mode. For interpretation of the references to colors in this figure, the reader is referred to the web version of this article.) Note that the modes with 

similar frequency are clearly aligned and correctly extracted in MNCMD. However, the performance of MVMD is heavily degraded by noise. More comparisons are provided 

in the attached animation. 

Table 1 

Computation time (in seconds) of the presented 

method. 

Case 1 2 3 4 

Time 0.5064 2.6167 3.6437 5.5567 
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Fig. 14. Convergence curves with 100 random initial instantaneous frequencies. 
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modes of MNCMD and MVMD are shown in Fig. 7 (a) and (b),

respectively. From these figures, it can be seen that the multi-

variate nonlinear chirp modes g 3,1 and g 3,2 are extracted correctly

and well aligned in terms of their frequency components. On the

contrary, MVMD does not correctly decompose the corresponding

modes. And the MVMD’s mode-alignment phenomenon in Fig. 7 (a)

is meaningless. This further illustrates MNCMD surpasses MVMD in

decomposing time-varying multivariate signals. 

4.1.4. Case 4: Signal with amplitude and frequency varying 

The last example (43) is a multivariate signal with both am-

plitude and frequency varying. Fig. 8 (a) and (b) depict the cor-

responding decomposition results of MNCMD and MVMD, respec-

tively. Like case 2 and 3, MNCMD is able to align all kinds of

modes with common frequency and accurately extract the actual

modes. By contrast, the performance of MVMD is much worse,

which validates that it is not suitable for processing time-varying

signals. Consequently, it can be concluded that MNCMD is superior

to MVMD in decomposing time-varying multivariate signals. {
x 1 ( t ) = ( 1 + 0 . 5 cos ( 2 πt ) ) cos ( 2 π cos ( 2 π2 t ) ) + ( 1 + 0 . 5 cos ( π

x 2 ( t ) = ( 1 + 0 . 5 cos ( 2 πt ) ) cos ( 2 π cos ( 2 π2 t ) ) + 2 cos ( 2 π36 t )

Fig. 9 shows the estimated instantaneous frequencies of these

four cases obtained by MNCMD. It is observed that the estimated

IFs are in good agreement with the real frequencies in different

cases. Note that MVMD only could provide a center frequency

value without time information. Therefore, the proposed MNCMD

shows great potential in multivariate time-frequency analysis. 

The computation time of the presented method in various cases

is reported in Table 1 . These data are obtained from a personal

computer equipped with an Intel Core i5 Processor, running MAT-

LAB version R2018a, on a 64-bit Windows operating system. It is
 

cos (2 π36 t) + η

s 
(
2 π24 t 2 

)
+ η

, η ∈ N ( 0 , 0 . 2 ) (43)

bserved that all cases are processed in a few seconds. Therefore,

he calculation efficiency of MNCMD is satisfactory. 

In summary, the above four examples demonstrate the pro-

osed MNCMD have attractive mode-alignment property and can

xtract modes correctly, especially for time-varying multivariate

ignals. On the contrary, MVMD suffers from difficulties when pro-

essing data with time-varying characteristics. 

.2. Filter bank structure 

A filter bank is an array of band-pass filters that separates

he input signal into multiple components, each one carrying a
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Fig. 15. (a): Time plots of bivariate oscillations and the corresponding modes obtained from MNCMD. (b): 2-D plots of bivariate oscillations (top left) and the corresponding 

mode 2 (top right), 3 (lower left), and 4 (lower right) obtained from MNCMD. 
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ingle frequency sub-band of the original signal [1] . Investigating

lter bank structures is useful to understand how a full spectrum

rocess is split into its modes. According to [46] , MEMD exhibits

uasi-dyadic filter bank structure for wGn (white Gaussian noise),

hich is similar to the wavelet filter bank. MVMD also shows filter

ank structure for wGn, while it is different from the quasi-dyadic

roperty observed within EMD/MEMD-based methods [1] . 

In this section, MNCMD utilizes the numerical Monte Carlo ex-

eriments based on wGn to reveal its filter bank structure. Like the

elated experiments on MVMD and MEMD, we applied MNCMD on

00 realizations of a four-channel wGn data of length L = 10 0 0 .

he corresponding power spectra of MEMD, MVMD, and MNCMD

re plotted in Fig. 10 . Comparing these three sets of graphs, it can

e seen that both MNCMD and MVMD follow a different filter band

tructure as compared to the quasi-dyadic filterbank property of

EMD. The bandwidths of MEMD’s modes are almost similar in

he log-frequency domain. While those of the other two decompo-

ition methods exhibit different bandwidths. It is notable that the

ode-alignment across channels is also apparent in three cases. A

horough study on the filter bank structure of MVMD and MNCMD

s not in the scope of this work and it would be an interesting

opic for further investigation. 

.3. Quasi-orthogonality of MNCMD modes 

Because the predefined basis function of Fourier-based or

avelet-based methods, such as STFT and WT, are orthogonal,

hey can ensure there is no information leakage across different

odes. However, the data-driven decomposition approaches do not

se specific basis function, which enable them to be adaptive but

lso lead to a problem: is there any information leakage across

heir modes? Therefore, it is critical to empirically demonstrate the

uasi-orthogonality. 

In this section, the multiple realizations of 4-channel wGn pro-

ess, which is adopted to reveal the filer bank structure in the pre-

ious section, are used to test the quasi-orthogonality of MNCMD’s

odes. Herein, the correlation coefficient (44) is used as a measure

o quantify the dependence between mode i and j : [1] . 

i, j = 

cov 
(
g i , g j 

)
std ( g i ) × std 

(
g j 
) (44) 
here cov ( ·) and std ( · ) denote the covariance and standard de-

iation, respectively. The closer the correlation coefficient is to 0,

he better the orthogonality between these two modes. The cor-

elation coefficient matrices for the set of Q = 8 modes obtained

rom MEMD, MVMD, and MNCMD for 4-channels wGn are trans-

ormed into gray-scale images, and displayed in Fig. 11 . Black and

hite denote 1 and 0, respectively. It is observed that the cor-

elation coefficient matrix in the case of MNCMD is almost a

iagonal structure, indicating a great quasi-orthogonality among

NCMD modes. While the matrices of MEMD and MVMD show

ome ‘leakage’ between adjacent modes because their second di-

gonals show some gray, especially for MEMD. Consequently, it is

nferred the proposed MNCMD outperforms MEMD and MVMD in

uasi-orthogonality. 

.4. Influence of channel number 

Like the previous work [1] , 500 realizations of wGn with chan-

el number M = 2 , 4 , 8 , and 16 are generated, and decomposed by

NCMD. For each case, the influence of M on the mode-alignment

roperty, filter bank structure and quasi-orthogonality are investi-

ated. The first and second rows in Fig. 12 display the resulting

lter bank plots and correlation coefficient matrices, respectively.

t can be seen that the filter bank and mode-alignment properties

ithin MNCMD are not affected by increasing channel number M .

imilarly, the diagonal nature of the bottom row of Fig. 12 high-

ights the quasi-orthogonality of MNCMD is perfectly retained as

 is varying. 

.5. Noise robustness 

The univariate NCMD is very robust to noise [2] . In theory, the

roposed MNCMD inherits the property of NCMD as a result of

eing a natural multivariate extension. Thereby, MNCMD should

ave gratifying noise robustness. The related experiments are con-

ucted on the bivariate signal (39) . This signal is added with a

oise η( t ), where η( t ) ∼ N 

(
0 , σ 2 

)
. Let σ vary from 0 to 1 with

nterval 0.01. An animation is attached to provide a visual com-

arison of the decomposition performance between MNCMD and

VMD. Specifically, Fig. 13 (a) and (b) display the decomposition

esults of MNCMD and MVMD respectively when σ = 1 . It can be



14 Q. Chen, L. Xie and H. Su / Signal Processing 176 (2020) 107667 

Fig. 16. 4-channel EEG signals and the selected modes obtained by MNCMD and MVMD. (a): Time plots of 4-channel EEG signals and the selected modes ( g 2 , g 5 , g 6 ) obtained 

by MNCMD. (b): Time plots of 4-channel EEG signals and the selected modes ( u 2 , g 4 , u 5 ) obtained by MVMD. (c): Power spectra of the 4-channel EEG signals (top left) and 

the selected modes ( g 2 (top right), g 5 (lower left), g 6 (lower right)) obtained by MNCMD (d): Power spectra of the 4-channel EEG signals and the selected modes ( u 2 (top 

right), u 4 (lower left), u 5 (lower right)) obtained by MVMD. 
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seen that the MNCMD recovers the common modes of 36-Hz tones

in both channels. The 2-Hz and 24-Hz components are presented

in g 1,1 and g 2,2 , respectively. However, for MVMD, although it cor-

rectly extracts the 36-Hz signal, the other two tones are fully de-

stroyed. Therefore, it is concluded that the MNCMD has better per-

formance than MVMD in noise robustness. More comparisons are

provided in the attached animation. 

4.6. Convergence 

Although we cannot provide a detailed convergence analysis in

the scope of this paper, an experimental investigation on the con-

vergence and sensitivity to initial conditions is conducted [2,13] .

Herein, (39) is used as the test subject. In the test, the initial IF

consists of two parts: (i) the true instantaneous frequencies IF t ,
nd (ii) random errors IF e , namely, I F init = I F t + I F e . In this case,

F t of the three modes are 2 Hz, 24 Hz, and 36 Hz, respectively;

he corresponding random errors IF e follow uniform distributions

 ( −1 , 1 ) , U ( −5 , 5 ) , and U ( −5 , 5 ) , respectively. A total of 100 ran-

om initial instantaneous frequencies are generated. In order to

uantify the convergence performance, the following reconstruc-

ion error (RE) is used as the measurement. 

E = 

Q ∑ 

i =1 

M ∑ 

m =1 

‖ 

g i,m 

− ˜ g i,m 

‖ 2 (45)

here Q = 3 , M = 2 ; g i,m 

and ˜ g i,m 

are the true modes and ex-

racted modes, respectively. Fig. 14 shows the convergence curves,

hich indicate MNCMD could converge to satisfactory results. 
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Fig. 17. (a): The plant-wide oscillations and their decomposition results obtained from MNCMD. (b): The normalized correlation coefficient matrix is transformed into a 

gray-scale image. The darker the color, the stronger the correlation. Values less than the threshold are set to 0. 
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. Real-world applications 

Because of the promising performance of MNCMD on simulated

ignals, more real-world applications can be expected. In order

o demonstrate the effectiveness and advantages of the proposed

NCMD in practical applications, herein, three typical examples

n various fields are studied, i.e., (i) the analysis of an oceano-

raphic float position record (two-channel), (ii) the separation of

-rhythms in EEG data (four-channel), and the plant-wide oscilla-

ion detection in industrial control systems (nine-channel). 

.1. Oceanographic float position records 

The first real-world example is taken from the Eastern Basin

xperiment. It contains position records of a subsurface oceano-

raphic float. The float was deployed in North Atlantic ocean to

rack the trajectory of salty water flowing the Mediterranean Sea.

his data set is available online ( http://wfdac.whoi.edu ). The in-

ut bivariate signal and its 2-D representation are displayed in

ig. 15 (a) (top row) and (b) (top left), in which the bivariate os-

illations (2-D rotations) are quite apparent [24] . 

The MNCMD is applied to the bivariate signal with an aim to

eparate its primary multivariate oscillations. The records are de-

omposed into 4 modes, as shown in Fig. 15 (a) and(b). It is ob-

erved that the evident rotations in the original signal have been

solated in separate components. Not all modes are rotating but

rimarily the last two ones, which correspond to the presumed co-
erent vortex. The rotating modes can a prior be used to extract

ner informations and the non-rotating components may reveals

he information about the background fluctuations determining the

ortex position [24] . This experiments on the practical data set in-

icate the ability of MNCDM to effectively separate multivariate

scillations from input signals while also demonstrating the mode-

lignment property again. 

.2. Separation of α-rhythms in EEG 

The analysis and process of multivariate Electroencephalogram

EEG) signals are always attended for brain computer interface

BCI), which can be used to understand the functional state of

rain [20] . Herein, the proposed MNCMD are applied to decompose

 4-channel EEG signal. This data set was sampled from an exper-

ment that involved a subject who kept relaxed and eyes-closed

tate for a period of time [1] . It is known that α-rhythms are de-

ected in EEG signal during the relaxed state with eyes closed. The

requency range of α-rhythms is 8 − 12 Hz and the sampling fre-

uency is 250 Hz. 

Fig. 16 (a) and (c) display the time-domain waveforms and fre-

uency spectrum of the original signals and selected modes ( g 2 , g 5 ,

 6 ) obtained from MNCMD, respectively. From the graphs above,

e can see that the α-rhythm within EEG is localized in mode

 2 . It is apparent that all channels corresponding to g 2 contains

he same α-rhythm thus emphasizing the mode-alignment prop-

rty of MNCMD again. The rest modes exhibit the similar mode-

http://wfdac.whoi.edu
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Table 2 

Plant-wide oscillation detection results based on MNCMD. (unit: samples per cycle). 

mode x 1 x 2 x 3 x 4 x 5 x 6 x 7 x 8 x 9 actual 

g 1 464 458 460 454 452 454 - - - 465 

g 2 - - - - - - 258 258 262 266 
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alignment phenomenon, too. As for the performance of MVMD, its

corresponding decomposition results are shown in Fig. 16 (a) and

(d), which indicate that MVMD captures the α-rhythm in mode

u 2 and remain mode-alignment property. It is worth noting that,

both g 6 in MNCMD and u 5 in MVMD correspond to artifacts due

to the AC mains power line, thus its frequency should be about 50

Hz [1] . However, Fig. 16 (d) (lower right) indicates that the power

frequency detected by MVMD is about 40 Hz, which is not in ac-

cordance with the fact. By contrast, MNCMD could correctly cap-

ture this component, as presented in the lower right of Fig. 16 (c).

Therefore, MNCMD shows better performance in this case. 

5.3. Detection of plant-wide oscillations 

The last real-world example is detecting plant-wide oscillations

in process control systems. Oscillation is one of the most common

abnormal phenomena encountered in process control systems. Al-

though the oscillation is usually generated in one or two loops, it

often propagates through the interconnected loops so that it causes

plant-wide oscillations. They can cause plants to be run in sub-

optimal conditions and may result in the waste of raw materials,

increased energy consumption and even compromised stability and

safety [14] . Consequently, it is necessary to detect and analyze the

plant-wide oscillations before the control problem is resolved via

proper service and troubleshooting. 

The plant-wide oscillation data are provided by [31] , where os-

cillations in a flotation circuit in a mineral concentrator plant are

observed. The sampling time is 10 s. The first row of Fig. 17 (a)

shows the measurements of 9 variables. The MNCMD decomposi-

tion modes ( g 1 , g 2 ) are displayed in the rest rows. 

Based on the decomposition results, an oscillation detector can

be carried out. The normalized correlation coefficient (46) is a

common index used to discard the pseudo oscillation modes [14] .

ζi,m 

= 

ρi,m 

{ ρ1 ,m 

, ρ2 ,m 

, . . . ρQ,m 

} (46)

where ρ i,m 

is the correlation coefficient between g i,m 

and x m 

, for

i = 1 , 2 , . . . , Q and m = 1 , 2 , . . . , M. Only the modes with ( ζ > T ζ )

are retained, where the threshold T ζ is 0.35 empirically. The corre-

sponding normalized correlation coefficient matrix is transformed

into gray-scale image and presented in Fig. 17 (a). It can be seen

that the first modes in x 1 − x 6 , and the second modes in x 7 − x 9 
are retained for significant oscillations. Then the oscillation peri-

ods are estimated by zero crossings [14] and the results are listed

in Table 2 . The last column in this table is a prior known oscilla-

tion period. It is observed that the estimated oscillation periods

obtained from MNCMD is completely consistent with the actual

situation [31] , i.e. there is a slower common oscillation present in

x 1 − x 6 and a faster common oscillation in x 7 − x 9 . Consequently,

the proposed MNCMD is able to be applied to detect plant-wide

oscillations in process control systems. 

6. Conclusions 

In this paper, a multivariate nonlinear chirp mode decomposi-

tion (MNCMD) algorithm is proposed to decompose multivariate

signals into a set of sub-signals. We first extend the univariate

NCM to its multivariate form (MNCM), which has a common or
oint frequency components across all channels. Then, based on the

act that a time-varying MNCM can be demodulated into a multi-

ariate narrow-band signal, an optimal demodulation problem is

stablished. The objective function aims to minimize the sum of

andwidths of all modes across all channels. Minimization of this

unction is efficiently achieved thorough ADMM. Apart from inher-

ting the desired characteristics of NCMD, this multivariate exten-

ion can extract an optimal set of multivariate modes and their

orresponding instantaneous frequencies without requiring more

ser-defined parameters than the univariate NCMD. 

Compared with other multivariate signal decomposition meth-

ds, such as MVMD and MEMD, the proposed MNCMD has been

hown to exhibit great superiorities on a variety of properties, in-

luding mode-alignment, filter bank structure, quasi-orthogonality,

obustness to channel number and noise level. Specifically, the pro-

osed MNCMD has at least fourfold advantages: 

(i) MNCMD remains mode-alignment property for time-varying

ultivariate signals; while MVMD is unable to process such sig-

als, thus lacks this property in these cases; 

(ii) MNCMD could provide time-frequency information con-

ained in the input data; while MVMD is formulated in the fre-

uency domain, and thus it cannot display such information. 

(iii) The modes of MNCMD have better quasi-orthogonality than

hose of MVMD and MEMD, which means MNCMD has less infor-

ation ‘leakage’ across different modes; 

(iv) MNCMD is more robust to noise than MVMD and MEMD. 

In the end, we highlight the utility and advantages of the pro-

osed method in three typical real-world applications. 
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ppendix A. Proof on the equivalence of (22) and (23) 

Note that (23) is the scaled form of augmented Lagrangian

unction (22) [40] . By combining the linear and quadratic terms in

22) and scaling the dual variable, the related computation would

e more convenient. Herein, we will prove they are equivalent. 

Proof: 
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ig. B.1. MNCMD (a) and MVMD (b) decomposition results in case where there are con
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Namely, (22) is equivalent to (23) . 

Q.E.D. 

ppendix B. Discussion on frequency calculation of MNCMD 

nd MVMD 

In the proposed MNCMD, the instantaneous frequency updates

rom multiple number of channels are power-weighted average to

stimate a single estimate of instantaneous frequency [36] , shown

s 

f k +1 
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m =1 f 
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∣∣2 (B.1) 

here a 

k +1 
i,m 

( t n ) is the instantaneous amplitude at time t n and

a 

k +1 
i,m 

( t n ) 
∣∣2 represents the power and is the weighting factor.

B.1) has the same form as in [36] and is consistent with the joint

nstantaneous frequency. Specifically, if a channel does not have a

ertain frequency component, the amplitude of the corresponding

requency will be 0, which would not interfere with the instan-

aneous frequency calculation of this layer. This idea (B.1) is not

abricated out of thin air, but inspired by the central frequency up-

ating formula of MVMD [1] 
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(B.2) 
trasting set of profiles from individual channels. It is observed that both methods 

sonable and effective. 
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where ω is the frequency; ˆ u i,m 

( ω ) is the Fourier transform of mode

u i,m 

( t ); 
∣∣ ˆ u i,m 

(ω) 
∣∣2 is the square of the amplitude corresponding to

the frequency ω and it is the weighting factor; ω i is the center fre-

quency of the i th mode. Clearly, (B.2) indicates MVMD updates the

center frequency by taking the contributions from power spectrum

of all channels into account, namely, the center frequency of each

channel is weighted and averaged according to its power. This is a

very promising view. Inspired by Parseval theorem, the weighted

average operation in the frequency domain can be performed in

the time domain equivalently. As a result, (B.1) is naturally estab-

lished. 

Both (B.1) and (B.2) aim at using multichannel frequency infor-

mation to estimate single channel frequency information. The dif-

ference is that (B.2) is in the frequency domain, while (B.1) is in

the time domain. Also, it can be found that (B.2) can only show

the information of the whole spectrum, thus MVMD cannot pro-

vide time domain information; while MNCMD can reveal these in-

formation. When the instantaneous frequencies are constant, the

performance of MNCMD and MVMD would be similar (shown in

Section 4.1.1 ). 

Herein, (B.3) is tested to demonstrate the weighted average

framework can deal with cases where there are contrasting set of

profiles from individual channels. {
x 1 ( t ) = cos ( 2 π2 t ) + 2 cos (2 π36 t + π/ 3 ) 
x 2 ( t ) = cos ( 2 π24 t ) 

(B.3)

where x 1 ( t ) contains two tones with 2 Hz and 36 Hz, respectively;

x 2 ( t ) only has one 24 Hz component. Namely, there are no com-

mon frequency components between channels. The correspond-

ing decomposition results of MNCMD and MVMD are displayed in

Fig. B.1 (a) and (b), respectively. It is observed that both methods

can process such signals well, which indicates the power-weighted

average framework is reasonable and effective. 

Supplementary material 

Supplementary material associated with this article can be

found, in the online version, at doi: 10.1016/j.sigpro.2020.107667 . 
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